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Prediction of heading date,
culm length, and biomass from
canopy-height-related
parameters derived from time-
series UAV observations of rice
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and Daisuke Ogawa2*
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Unmanned aerial vehicles (UAVs) are powerful tools for monitoring crops for

high-throughput phenotyping. Time-series aerial photography of fields can

record the whole process of crop growth. Canopy height (CH), which is vertical

plant growth, has been used as an indicator for the evaluation of lodging

tolerance and the prediction of biomass and yield. However, there have been

few attempts to use UAV-derived time-series CH data for field testing of crop

lines. Here we provide a novel framework for trait prediction using CH data in

rice. We generated UAV-based digital surface models of crops to extract CH

data of 30 Japanese rice cultivars in 2019, 2020, and 2021. CH-related

parameters were calculated in a non-linear time-series model as an S-

shaped plant growth curve. The maximum saturation CH value was the most

important predictor for culm length. The time point at the maximum CH

contributed to the prediction of days to heading, and was able to predict

stem and leaf weight and aboveground weight, possibly reflecting the

association of biomass with duration of vegetative growth. These results

indicate that the CH-related parameters acquired by UAV can be useful as

predictors of traits typically measured by hand.
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Introduction

Phenotyping is a fundamental procedure in field testing of

crops and is typically done laboriously by hand. To make

phenotyping more effective, various methods using unmanned

aerial vehicles (UAVs) have been developed for measuring crop

physical parameters, especially in the field (Furbank and Tester,

2011; Ninomiya, 2022). UAVs can carry several types of

cameras, including RGB (red–green–blue), multispectral, and

thermal infrared, to take images of crops (Yang et al., 2017;

Sakamoto et al., 2022). From RGB images, the 2D vegetation

fraction and vertical canopy height (CH) can be extracted

(Ogawa et al., 2021a; Ogawa et al., 2021b). Vegetation indices,

obtained by spectral analysis, such as the Normalized Difference

Vegetation Index (NDVI), have been used for estimating

nitrogen use efficiency (Liang et al., 2021), drought resistance

(Jiang et al., 2021), and lodging (Yadav et al., 2017; Singh et al.,

2019), and for predicting biomass and yield (Yue et al., 2017;

Gong et al., 2018; Di Gennaro et al., 2019; Duan et al., 2019;

Wang et al., 2019a). These attempts indicate the usefulness of

UAVs for high-throughput phenotyping of crops in the field.

Rice is a staple food, especially in Asia (Muthayya et al.,

2014). Crucial to increased and sustainable rice production, yield

and biomass are complex traits affected by plant shape and size

(Peng et al., 2008; Xing and Zhang, 2010; Ikeda et al., 2013).

Culm length (CL), panicle length (PL), and panicle number

(PN), values of which reflect the genetic architecture of rice, are

roughly related to yield and biomass (Zhao et al., 2011).

Breeding for longer culms led to the selection of a rice line

with higher grain yield and plant weight (Nomura et al., 2019). A

rice line carrying OsglHAT1, which encodes a new-type GNAT-

like protein that harbors intrinsic histone acetyltransferase

activity, had increased plant size and grain length and width,

with increased yield and biomass (Song et al., 2015). Panicle

length (PL) and panicle number (PN) are strongly related to rice

yield (Agata et al., 2020; Liu et al., 2022). Growth period also

influences rice yield and biomass (Endo-Higashi and Izawa,

2011; Gao et al., 2014), and days to heading (DTH) is generally

used to evaluate the transition from vegetative to reproductive

stage. Conventionally, CL, PL, PN, and DTH are measured by

hand at high cost. For rice breeding and examining the

cultivation competence of cultivars at lower cost, a practical

high-throughput phenotyping system to estimate these traits in

the field is required.

In our previous study, rice CH estimated from UAV images

was highly correlated with CL (Ogawa et al., 2021b), making it a

potential predictor of yield and biomass. A promising approach

to make the most of UAV-based CH data for rice phenotyping is

time-series monitoring, in which remote sensing has an

advantage by being non-invasive and non-destructive.

Estimation of plant height in maize inbred lines at four growth

stages by UAV showed that temperate lines grew faster at early

growth stages, but tropical lines grew faster at later growth stages
Frontiers in Plant Science 02
(Wang et al., 2019b). Time-series observations of rice CH with

UAV correlated highly with CHmeasured by hand, and revealed

growth patterns and differences in functional stages of

quantitative trait loci for CH (Ogawa et al., 2021b). Use of a

cable-suspended phenotyping platform allowed the temperature

response of CH in wheat lines to be clarified (Kronenberg et al.,

2021). These studies revealed time-series CH dynamism as a new

feature different from one-off CH measurement and led to the

hypothesis that time-series CH analysis could reveal genetic and

phenological characteristics of rice cultivars and predict yield-

related traits usually measured by hand.

One of the important challenges in time-series data analysis is

handling time-series changes to allow comparison (Giorgino, 2009;

Sugihara et al., 2012; Maziarz, 2015). Many time-series models have

been proposed for analyzing crop phenology. Such models include

shape-model fitting (Sakamoto et al., 2013; Zhou et al., 2020),

random regression with the Legendre polynomial (Campbell et al.,

2018; Campbell et al., 2019), segmented linear regression (Toda

et al., 2021), and non-linear growth curves (Chang et al., 2017;

Grados et al., 2020; Poudel et al., 2022). Anderson et al. (2019)

applied a three-parameter logistic model (S-shape non-linear curve)

to maize CH time-series data measured by UAV over 1 year,

applied a linear mixed effects (LME) model to the logistic

parameters, decomposed the parameter variance into genetic and

environmental effects: they showed that some of the parameters

could be used as predictors of grain yield. Borra-Serrano et al.

(2020) and Chang et al. (2017) applied similar S-shape non-linear

curves to, respectively, soybean and sorghum CH time-series data

measured by UAV. In contrast to these crops, in which CH

increases with plant growth, rice CH decreases in the

reproductive stage. Therefore, it is necessary to develop a new

model to incorporate the effects of the CH decrease and its timing,

and to apply it to CH time-series data covering various rice lines.

In this study, we aimed at revealing how UAV-derived time-

series CH data are useful for predicting yield and biomass and

related traits such as DTH, CL, PL and PN. We developed a

novel time-series model incorporating both CH increase and

decrease during the growth period, unlike previous models

developed for maize, soybean, and sorghum. To develop our

model, we used data covering 3 years and 30 cultivars, enabling

us to evaluate its robustness and to analyze the cultivar effects by

LME models. Through this analysis, we developed a practical

and high-throughput method for the prediction of rice traits

from CH-related parameters.
Materials and methods

Growing of rice cultivars

Seeds of 30 rice cultivars in Japan, including those developed

for high grain yield, lodging resistance, disease resistance, and

brown rice quality (Supplementary Table 1), were sown in
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seedling medium on 17 April 2019, 20 April 2020, and 20 April

2021. We transplanted 3 seedlings per hill at a density of 22.2

plants/m2 into a paddy field in Tsukubamirai city (36°00′33″N,
140°01′20″E), Japan, on 17 May 2019, 15 May 2020, and 13 May

2021. The paddy field was divided into 60 plots, two per cultivar

(Figure 1). The size of each plot was 2.7 m2. The plants were

grown in the field for about 5 months.
UAV-based aerial photography

Aerial observations were made about once a week as in our

previous studies (Ogawa et al., 2019; Ogawa et al., 2021a; Ogawa

et al., 2021b). We used a Phantom 4 Pro UAV (P4P; DJI,

Shenzhen, China) to capture RGB images with an onboard 20-

megapixel camera that flew automatically at 1.0 m/s over the

paddy field at an altitude of 10.3 m. DJI GS Pro software

controlled the flight path and set the following photogrammetry

conditions: capture mode, time interval; front overlap ratio, 80%;

side overlap ratio, 80%; gimbal pitch angle, −90°, white balance,

cloudy; aperture, auto; shutter, auto. Each flight took 150–200

images covering the field, each measuring 5472 × 3648 pixels. To

set the focus, the P4P was manually raised to 10.3 m, the camera

was focused automatically on a region of the canopy, and then the

focus mode was changed to manual. We placed seven ground

control point (GCP) markers on the ground around the test field.
Frontiers in Plant Science 03
We obtained the altitude, longitude, and latitude of each GCP by

real-time kinematic positioning using a DG-PRO1RWS receiver

(BizStation Corp., Matsumoto, Japan).
Generation of digital surface model and
quantification of CH

As previously, Agisoft MetaShape Professional v. 1.6.5

software (Agisoft, St. Petersburg, Russia) generated a digital

surface model (DSM) from each image set (150–200 images

per set) by the date of photogrammetry in the following

procedure: (1) align photos (high accuracy), (2) import GCPs,

(3) optimize camera, (4) build dense cloud, (5) build digital

elevation model (source data to be dense cloud), and (6) export

the digital elevation model. The coordinate system was set to

UTM zone 54N (WGS-84) and the resolution to 2 mm/pixel.

Next, QGIS (3.20.0) software (QGIS Development Team) cut

out the area of the paddy field from each DSM image and

identified the position of each plot to create shape files. Finally, a

script written in Python (3.9.7: Python Software Foundation) cut

out the portion in the DSM images corresponding to each plot in

reference to the shape files. The computer was an AMD Ryzen

Threadripper 2990WX (32-Core Processor, 3.00 GHz, 128 GB

RAM, GeForce RTX 2080 Ti GPU) running the 64-bit Windows

10 Pro operating system.
FIGURE 1

Framework of our analysis for the traits prediction from CH-related parameters. Thirty rice cultivars including AKT and TKA were grown with 2
replicates in 2019, 2020, and 2021. Aerial photogrammetry was conducted weekly. CH time-series data were obtained by generating a DSM and
CH-related parameters were calculated. Several traits were measured by hand. Statistical analysis included linear regression for the traits
prediction and linear mixed effects modeling for the variance decomposition of the traits and CH-related parameters.
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We defined the canopy position as the 95th percentile in the

cut-out DSMs corresponding to each plot. CH was defined as the

difference between canopy position and ground level. We

defined ground level as the 2nd percentile just after

transplanting in the cut-out DSMs corresponding to each plot.
Fitting time-series model to the CH data

For the statistical modeling of the CH time-series data, we

adopted a three-parameter logistic as the typical model for the S-

shape plant growth (Paine et al., 2012). Since the logistic

asymptotically approaches the maximum saturation value K,

we modified it to incorporate the CH decrease in the late growth

phase to develop the following time-series model:

CH =

K
1+exp r d0−xð Þð Þ   when   x ≤ d1ð Þ,

K
1+exp r d0−xð Þð Þ − a x − d1ð Þ2  (when   x > d1),

8<
: (1)

where x is days after sowing, d0 is the time point at the highest

growth rate, d1 is the time point at the maximum CH, r is the

growth rate, and a is the CH decrease rate from the logistic

S-shape curve in the late growth phase (Figure 2).

For parameter estimation, we used a two-step procedure to

prevent false convergence in the estimation algorithm. First, we

calculated K and d1, taking the maximum value in each CH time-

series data set as K. We fitted a cubic polynomial to each data set

and obtained d1 as the time point when the cubic polynomial

was at its maximum.We applied the following cubic polynomial:

CH = b0 + b1x + b2x2 + b3x3 : (2)

Second, we fitted equation 1 given the values of K and d1. Except

for K, all parameters were obtained by means of the nonlinear

least squares method implemented in R (R Core Team, 2021).

For parameter estimation for equation 1, we used the R function

nls, adopting the nl2sol algorithm and setting the initial values to

d0=50 , r=0.05 , and a=1.0 × 10−4 .
Manual measurement of traits related
to yield

Heading date was defined as the date when panicles emerged

from about half of the stems in each plot. DTH (days) was the

period from the sowing date to the heading date. CL (m) and PL

(cm) of the longest culm of each plant were measured and PN

was counted once from 2 to 4 weeks after heading. CL was

defined as the length from the ground to the panicle base, and PL

was defined as the length from there to the tip of the spikelet.

Mean values from 10 plants per cultivar were used for CL, PL,

and PN. For aboveground dry weight (ADW; g), 50 plants per

plot at maturity were harvested from the ground and air-dried
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for more than 2 weeks before the measurement. Stem and leaf

weight (SLW; g) was obtained as ADW − grain weight (GW; g).

These traits were measured in each plot. All trait names are listed

in Table 1.
Statistical analysis of traits and parameters

To decompose the traits and CH-related parameters into

cultivar, year, and cultivar × year interaction effects, we applied

the linear mixed effects (LME) model:

Xlyb = mX + Xl + Xy + Xly + ϵ, (3)

where Xlyb is a parameter or trait of cultivar l in year y and plot b;

μX is the fixed effect for the average value; Xl eN(0,s 2
l ), Xy eN

(0,s 2
y ), and Xly eN(0,s 2

ly) are random effects of cultivar, year,

and cultivar × year interaction, respectively; and ϵ eN(0,s 2
ϵ ) is

the residual. We defined heritability as the ratio of cultivar

variance to the total variance:

h2 = s 2
l

s 2
l +s

2
y +s 2

ly+s
2
ϵ
: (4)

The R package lme4 (Bates et al., 2015) estimated the

parameters and the best linear unbiased predictors (BLUPs) of

the LME model by the REML method. Total variance was

calculated as follows:

s 2
All = s2

l + s 2
y + s 2

ly + s2
ϵ

We used the linear regression model to predict the yields from

the CH-related parameters and evaluated whether the phenology
FIGURE 2

Fitting time-series model to CH time-series data. Red points are
CH data obtained by UAV. The time-series model applied to the
data is the red S-shaped curve. The model was prescribed by 5
parameters: K, the maximum saturation value; r, growth rate; a,
CH decrease in the late growth phase; d0, time point at the
highest growth rate; d1, time point at maximum CH. This curve
was described in equation (1).
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data contained enough information about yield. To reveal what

CH-related parameters are useful for the prediction of traits, we

examined Pearson’s correlations (cor). Since multicollinearity

impairs the accuracy of regression coefficients, we used backward
Frontiers in Plant Science 05
variable selection to prevent it. We calculated the variance inflation

factor in the R package car (Fox and Weisberg, 2019) for variable

selection and adopted four parameters as predictors without

multicollinearity (variance inflation factor< 5): K, d0, d1, and r

(Supplementary Table 2). All four predictors were standardized to

have a mean of 0 and standard deviation of 1. Next, we constructed

linear regression models by the ordinary least squares method to

predict CL, DTH, ADW, GW, and SLW. The prediction accuracies

were evaluated by cross-validation (CV), splitting data by year and

by cultivar (Figure 3). Finally, the regression coefficients were

estimated from all data (n = 180). As measures of accuracy, we

used cor and root-mean-square error (RMSE) between observed

and predicted values of test data. RMSE evaluates the accuracy of

predicting the exact values, and cor evaluates the accuracy of

predicting the magnitude of correlation.
TABLE 1 Traits and their abbreviations.

Abbreviation Trait
ADW Aboveground dry weight

CL Culm length

DTH Days to heading

GW Grain weight

PL Panicle length

PN Panicle number

SLW Stem and leaf weight
B

A

FIGURE 3

Schemes of CV to predict manually measured traits. (A) Threefold CV, where data were split by year: two years were used for training data and
the other as test data. (B) Tenfold CV, where data were split by cultivar: 27 cultivars as training data and the other 3 as test data.
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Influence of accumulated daily mean
temperature on CH-related parameters
d0 and d1

We transformed d0 and d1 values to accumulated

temperature d0
temp and d1

temp, starting from the planting date

to the date of d0 or d1:

dtemp
0 = o

d0

d=dp+1

Td

dtemp
1 = o

d1

d=dp+1

Td

where Td is the mean temperature of day d and dp is the date of

planting. The base temperature was set to 0°C. We used the LME

model in equation 2. Daily mean temperature (°C) in the paddy

field is shown in Supplementary Data 1-3.
Results

Relationships between manually
measured traits and CH-related
parameters in 30 rice cultivars

We characterized phenotype data of 30 Japanese rice

cultivars (Supplementary Table 1) in 2019, 2020, and 2021

from the aspect of genetics and examined how to use the CH

data for the prediction of traits usually measured by

hand (Figure 1).

The sizes of interannual differences in phenotypic distribution

depended on trait (Figure 4; Table 2; Supplementary Table 3).

Distributions of DTH, CL, PL, and PN were highly overlapped

among years, and heritability was high: that of DTH was 0.80, CL

0.81, PL 0.90, and PN 0.63 (Table 2). On the other hand, the

phenotypic distribution of GW was wider than that of SLW,

especially between 2021 and the other 2 years (Figure 4).

Consistent with this, heritability of GW was 0.29, much lower

than that of SLW at 0.77. Therefore, GW was more susceptible to

year effect than SLW (Table 2). ADW is SLW + GW, and its

heritability (0.70) was positioned between theirs.

We collected 2834 CH data of the 30 Japanese cultivars over

the 3 years (Supplementary Table 4). Given the huge size of the

dataset, we obtained CH-related parameters by applying time-

series curves to the CH data by plot (Supplementary Figure 1).

The range of phenotypic distributions tended to differ by year

(Figure 4; Supplementary Table 3). Heritabilities of K (0.54) and

d1 (0.63) were higher than those of r (0.21) and d0 (0.29),

suggesting that r and d0, parameters of vegetative growth,

might also be more susceptible to year effects than K and d1,

parameters of the reproductive stage (Table 2).
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We obtained correlation plots between the parameters and

traits (Figure 5; Supplementary Figure 2). K was positively

correlated with CL. This result is consistent with our previous

data showing high correlation between CH and CL in several rice

lines (Ogawa et al., 2021b). d1 was positively correlated with

DTH, ADW, and SLW. These results motivated us to use K and

d1 to predict traits.
Prediction of CL and DTH from CH-
related parameters

CV indicated the accuracy of predicting CL and DTH from

CH-related parameters (Table 3). In predicting the magnitudes of

CL, coryear = 0.82 and corcultivar = 0.68; and of DTH, coryear = 0.89

and corcultivar = 0.85. The scatter plots between observed and

predicted CL and DTH were highly correlated (Figure 6). In

predicting the exact values of CL, RMSEyear = 0.05 m and

RMSEcultivar = 0.04 m; and of DTH, RMSEyear = 5.2 days and

RMSEcultivar = 4.2 days (Table 3). These RMSE values were smaller

than the total standard deviations, the square root of the total

variances (Table 2). These results indicate that the CH-related

parameters had information that could be used to predict CL

and DTH.

We calculated the regression coefficients in the regression

models. Since all predictors were standardized, the importance

of each parameter in the model was quantified as the absolute

value of each coefficient. The regression model to predict CL was

CL = 0:84 + 0:06K + 0:01d0 + 0:01d1 + 0:01r (5)

and the coefficient of determination was R2=0.684. The model to

predict DTH was

DTH = 108:6 + 0:1K + 1:3d0 + 6:8d1 + 1:1r (6)

and R2 = 0:794

In predicting CL, the coefficient of K (0.06, significant by t-test

at 0.1%; Supplementary Table 5) had the largest absolute value,

more than 4× the second largest one, that of d0 (0.01). In predicting

DTH, the coefficient of d1 (6.82, significant by t-test at 0.1%;

Supplementary Table 5) had the largest absolute value, more than

5× the second largest one, that of d0 (1.34). Therefore, in the linear

regressionmodel,Kwas the most important predictor of CL, and d1
was the most important predictor of DTH.

The linear regression models based on CH-related

parameters explained the total variances of the manually

measured traits, but it was still uncertain whether the relations

between the two were derived from the characteristics of each

cultivar. The LME model, which decomposed the total variance

into cultivar, year, cultivar × year interactions, and residual,

extracted the cultivar effects as the BLUPs from the whole data.

First, the high heritabilities of CL (0.81) and DTH (0.80) imply

that a large proportion of the total variance derived from cultivar
frontiersin.org
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FIGURE 4

Frequency distributions of manually measured traits and CH-related parameters, shown as histograms.
TABLE 2 Summary statistics of CH-related parameters and traits obtained by the linear mixed effects model.

Trait Heritability Mean sAll2 a sl2 b sy2 c sly2 d sϵ2 e

DTH 0.80 108.6 7.3 × 10 5.9 × 10 1.2 × 10 1.8 2.6 × 10−1

CL 0.81 840.3 × 10−3 5.2 × 10−3 4.3 × 10−3 2.0 × 10−4 1.8 × 10−4 5.9 × 10−4

PL 0.90 200.4 × 10−1 3.7 3.4 1.0 × 10−1 5.1 × 10−2 2.2 × 10−1

PN f 0.63 173.2 × 10−1 8.2 5.2 6.5 × 10−1 0.0 2.4

GW 0.29 173.0 × 10 6.5 × 104 1.9 × 104 2.3 × 104 1.2 × 104 1.2 × 104

SLW 0.77 252.4 × 10 2.7 × 105 2.1 × 105 2.3 × 104 1.3 × 104 2.7 × 104

ADW 0.70 425.4 × 10 3.3 × 105 2.3 × 105 5.2 × 104 5.5 × 103 4.2 × 104

K 0.54 103.5 × 10−2 8.0 ×10−3 4.3 ×10−3 2.3 ×10−3 8.1 ×10−4 6.1 ×10−4

d1 0.63 122.8 7.6 × 10 4.8 × 10 1.5 × 10 1.2 × 10 7.4 × 10−1

r 0.21 617.2 × 10−4 3.7 × 10−5 7.7 × 10−6 8.9 × 10−6 1.8 × 10−5 2.4 × 10−6

d0 0.29 737.3 × 10−1 2.3 × 10 6.8 1.4 × 10 1.7 4.8 × 10−1

a 0.61 385.6 × 10−6 3.1 ×10−8 1.9 ×10−8 1.4 ×10−9 9.7 ×10−9 1.1 ×10−9
Frontiers in Plan
t Science
 07
 front
aTotal variance.
bVariance of cultivars.
cVariance of years.
dVariance of cultivar × year interaction.
eVariance of residuals.
fNote that the result of PN was singular.
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effects. Note that heritability is the ratio of cultivar effect to the

total variance. Second, the cultivar effects of CL, DTH, K, and d1,

quantified as the BLUPs of each cultivar, showed a clear

tendency that the cultivars with smaller K had a smaller CL,

and those with smaller d1 had a smaller DTH (Figure 7). The

correlation of cultivar BLUPs between K and CL was cor = 0.89,

and that of d1 and DTH was cor = 0.94. These results indicate

that the total variances of CL and DTH were largely prescribed

by the cultivar effects of K and d1, respectively.
Prediction of ADW, GW, and SLW from
CH-related parameters

As it did for DTH and CL, our CV method gave the accuracy

of prediction of ADW, GW, and SLW (Table 3). In predicting

the magnitudes of ADW, coryear = 0.72 and corcultivar = 0.62 and

of SLW, coryear = 0.81 and corcultivar = 0.74 (Figure 6). These
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values were better than predicting the magnitude of GW: coryear
= 0.00 and corcultivar = 0.31. The scatter plots between observed

and predicted SLW and ADW were highly correlated. In

predicting the exact values of ADW, cross-validation by year

(RMSEyear = 406.7 g) had better accuracy than that by cultivar

(RMSEcultivar = 638.6 g), as had that of SLW (Table 3). The CH-

related parameters contained information with which to predict

ADW and SLW, but yearly fluctuations could increase RMSE. By

contrast, as shown in the scatter plot between observed and

predicted GW (Figure 6), the slopes were almost flat and the

model explained little of the GW variance. Therefore, CH-

related parameters held little information with which to

predict GW, at least under our linear regression model.

The regression coefficients indicated the importance of each

parameter in our regression models. (All predictors were

standardized.) The regression model to predict ADW was

ADW = 4254 + 176K − 242d0 + 518d1 + 132r (7)

and R2=0.475 . The model to predict SLW was

SLW = 2524 + 165K − 199d0 + 541d1 + 105r (8)

and R2=0.684 . In predicting ADW and SLW, all four parameters

were significant by t-test at 0.1%, and d1 had the largest absolute

values (Supplementary Table 5). For ADW, the coefficient of d1
was 518, more than 2× the absolute value of d0 (−242), the

second largest. Similarly, for SLW, the coefficient of d1 was 540,

more than 2× the absolute value of d0 (−198). Therefore, d1 was

the most important predictor of ADW and SLW.

The results of the LME model uncovered the effect of each

cultivar on the total variance of ADW and SLW. The high

heritabilities of ADW (0.70) and SLW (0.77) imply that a large

proportion of total variance derived from cultivar effects. The

cultivar effects of ADW, SLW, and d1, quantified as the BLUPs of

each cultivar, showed a clear tendency in which cultivars with

smaller d1 had smaller ADW and SLW (Figure 7C). On the other

hand, the cultivar BLUPs of GW had little relation with those of

d1. The correlations of cultivar BLUPs of d1 with SLW (cor =

0.93) and ADW (cor = 0.87) were higher than that with GW (cor

= −0.05). The cultivar effects of d1 clearly reflected those of SLW.

As ADW = SLW + GW, since the low correlation indicates that

the cultivar effects of d1 and GW were almost independent, the
TABLE 3 Prediction accuracy of five traits evaluated by CV by year and by cultivar.

CV by year CV by cultivar

coryear RMSEyear corcultivar RMSEcultivar
CL 0.823 522.9 × 10−4 0.682 442.3 × 10−4

DTH 0.890 515.1 × 10−2 0.851 420.6 × 10−2

ADW 0.716 638.6 0.620 406.7

GW 0.003 294.6 0.312 232.6

SLW 0.808 437.0 0.743 291.9
cor, Pearson’s correlation coefficient; RMSE, root mean square error.
FIGURE 5

Correlation plot of parameters and traits in 2019. Values are
correlation coefficients (cor); circles present them by color and
size.
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result that the cultivar effects of d1 corresponded to those of

ADW derives from the relation of the cultivar effects of d1 and

SLW (Figure 7C; Supplementary Figures 3-5).
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Sensitivity of accumulated daily mean
temperature to CH data

The frequency distributions of the CH-related parameters

differed among years (Figure 4), indicating that those may be

influenced by environmental factors. In the developmental rate

model, which is well known for the prediction of DTH in rice,

daylength and daily mean temperature are explanatory variables

(Horie et al., 1995). We asked whether the change of CH is

affected by accumulated daily mean temperature instead of

daylength, because the former varied among years

(Supplementary Data 1-3), whereas daylength was almost

constant owing to the similar planting dates. CH-related

parameters d0 and d1 are based on time-series data, but d0
temp

and d1
temp are based on accumulated daily mean temperature.

Transforming d0 into d0
temp increased heritability from 0.29 to

0.58 (Supplementary Table 6) and decreased the year effect from

61% to 21% (Figure 8), meaning that the year effect on d0 was

explained mostly by the accumulated temperature. On the other

hand, the heritability of d1
temp (0.62) was almost the same as that

of d1 (Supplementary Table 6; Supplementary Figure 6). These

results indicate that the time point at the maximum CH (d1),

which is linked to heading date, is insensitive to accumulated

daily mean temperature, but that at the highest CH growth rate

(d0) is sensitive to it.
Discussion

We constructed a time-series model and applied it to the

data of 30 rice cultivars in 2019, 2020, and 2021, which were

derived from UAV-based time-series aerial photography. In

the case of maize (Anderson et al., 2019), soybean (Borra-

Serrano et al., 2020) and sorghum (Chang et al., 2017), CH

continues to increase, and there is little need to consider the

difference of CH growth in between vegetative and

reproductive stages. On the other hand, the CH decrease in

the reproductive stage is distinct in rice. In our model, we

introduced the parameters d1, the time point at the maximum

CH; and a, the rate of CH decrease in the late growth phase, in

addition to K, the maximum saturation value; d0, the time

point at the highest growth rate; and r, the growth rate. Our

model proved suitable for predicting CL, DTH, SLW, and

ADW. The highly heritable CH-related parameters d1 and K

contributed to the prediction of DTH and CL. Notably, d1 also

contributed to the prediction of SLW and ADW, possibly

reflecting the association of biomass with duration of

vegetative growth. The cultivar effects of traits measured by
FIGURE 6

Observed and predicted values of CL, DTH, ADW, SLW, and GW.
Plots show the results of CV by (left) year and (right) cultivar. The
points plot datasets of predicted and observed values, colored
by year; the lines are linear regressions applied to them.
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hand (CL, DTH, SLW, and ADW) and their corresponding

CH-related parameters were highly correlated. These results

indicate that CH-related parameters are useful for the

prediction of traits usually measured by hand, reinforcing the
Frontiers in Plant Science 10
significance of time-series monitoring by UAV in high-

throughput phenotyping.

Desai et al. (2019) proposed a method to precisely estimate

heading date by detecting flowering panicles in RGB images
B

C

A

FIGURE 7

Scatter plots of cultivar effects between CH-related parameters and manually measured traits. (A) Flow chart of the process to generate scatter
plots. The cultivar effect (Xl) on traits and parameters was extracted from the linear mixed effects model as BLUPs from the 3-year experiment.
(B, C) Plots of cultivar effects showing correlations between (B) K and CL and between (C) d1 and DTH, ADW, SLW, or GW. Correlation
coefficients (cor) are shown in plots. Cultivar name codes are shown in red.
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taken with a fixed camera every 5 min. Their method has the

advantage of directly detecting panicles but is unsuitable for use

by UAV because it requires a higher shooting frequency and a

lower shooting altitude. On the other hand, our UAV method
Frontiers in Plant Science 11
enabled us to predict DTH by focusing on the features of time-

series CH changes in images taken weekly. Similarly, Zhao et al.

(2021) proposed a method to predict wheat heading date by

applying a logistic curve to growth data obtained by UAV,
B

A

FIGURE 8

Visualization of the linear mixed effects model for (A) d0 and (B) d0
temp. Left, proportions of 4 variance components; right top, BLUPs of cultivar

and cultivar × year interactions of 30 cultivars; right bottom, BLUPs of 3 years. Cultivars are sorted by d1. The numbers in cultivar components
indicate percentage heritability.
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extracting the date when the second derivative is minimum. Our

and their studies indicate that time-series models derived from

UAV data can reveal developmental changes in crops in the field.

Our approach relies on applying a time-series model to CH

data spanning crop growth from the vegetative stage to the

reproductive stage in the field, and uses CH-related parameters

as summary statistics of each trajectory. Time-series or

longitudinal trait data have been modeled in several ways,

including random regression with the Legendre polynomial.

Although this polynomial can be incorporated into the

expectation-maximization algorithm (Yang et al., 2006) and

kernel methods (Campbell et al., 2018; Campbell et al., 2019),

it is difficult to interpret the coefficients in the models. The

coefficients of our CH-related parameters, on the other hand,

have explicit meaning in the context of phenology and allow

better interpretability.

The LME models decomposed each CH-related parameter

into cultivar, year, and cultivar × year interaction effects. We

considered year effect as an environmental effect and examined

the influence of accumulated daily mean temperature on CH

data. Our results indicate that d0, a CH-related parameter in the

vegetative stage, is sensitive to the accumulated daily mean

temperature, but d1, in the reproductive stage, is not. It is

possible that DTH, associated with d1, is regulated by

daylength, but growth is affected by temperature. In terms of

cultivar effect, we showed strong correlations between K and CL,

and between d1 and DTH, ADW, or SLW, suggesting the high

contribution of these CH-related parameters to the prediction of

each trait. This analysis can be useful in cultivar characterization.

For example, in the case of cultivars “HKR” and “TYM”, the

BLUPs of ADW with d1 deviated from linear (Figure 7C),

probably reflecting their high yield and biomass.

CV by using cor and RMSE evaluated the robustness of the

regression models to predict CL, DTH, ADW, GW, and SLW in

an untested year and in untested cultivars. CV using cor estimates

the magnitude of the correlation. In predicting CL, DTH, ADW,

and SLW, values of cor by both CV methods were high. CV using

RMSEs, which estimates the accuracy at predicting exact values of

test data, can evaluate model robustness from the viewpoint of

model variance, the phenomenon by which the prediction

fluctuates with the training data, which results in variance of the

predicted values (Bishop, 2006; Hastie et al., 2009). In predicting

CL and DTH, RMSEs were similar by both types of CV methods.

However, in predicting ADW and SLW, RMSEs of CV by year

were about 1.5 times higher than those of CV by cultivar.

Therefore, the prediction of ADW and SLW had model

variance derived from year.

This study provides a novel method to predict traits that

would usually be measured by hand from CH-related parameters

extracted from aerial time-series data. The parameters did not

prove useful in the prediction of GW, which manually measured

data showed was not heritable. This indicates that GW is more

sensitive to environment, suggesting the necessity of
Frontiers in Plant Science 12
environmental data for the prediction of GW. We will

examine new models for GW prediction from environmental

data and other UAV-derived time-series data.
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SUPPLEMENTARY FIGURE 1

Trajectory of each CH time-series curve. The LME model calculated the
cultivar effects of each CH-related parameter, which generated the

cultivar-specific time-series curve (“Cultivar E”).

SUPPLEMENTARY FIGURE 2

Correlation plot of parameters and traits in (A) 2020 and (B) 2021.

Values are correlation coefficients (cor); circles present them by color
and size.

SUPPLEMENTARY FIGURE 3

Visualization of the LME model for GW. Left, proportion of 4

variance components; right top, BLUPs of cultivar and cultivar × year
interactions of 30 cultivars; right bottom, BLUPs of 3 years. Cultivars are

sorted by d1.
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SUPPLEMENTARY FIGURE 4

Visualization of the LME model for ADW. Left, proportion of 4 variance
components; right top, BLUPs of cultivar and cultivar × year interactions

of 30 cultivars; right bottom, BLUPs of 3 years. Cultivars are sorted by d1.

SUPPLEMENTARY FIGURE 5

Visualization of the LME model for SLW. Left, proportion of 4 variance

components; right top, BLUPs of cultivar and cultivar × year interactions
of 30 cultivars; right bottom, BLUPs of 3 years. Cultivars are sorted by d1.

SUPPLEMENTARY FIGURE 6

Visualization of the linear mixed effects model for (A) d1 and (B) d1
temp.

Left, proportion of 4 variance components; right top, BLUPs of cultivar
and cultivar × year interactions of 30 cultivars; right bottom, BLUPs of 3

years. Cultivars are sorted by d1.
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