4 research outputs found

    Anchoring the genome

    Get PDF
    Specific attachment of chromosomal sites to the nuclear matrix is crucial to the control of transcription and DNA replication

    A standardised methodology for the extraction and quantification of cell-free DNA in cerebrospinal fluid and application to evaluation of Alzheimer's disease and brain cancers

    Get PDF
    Cerebrospinal fluid (CSF) is a source of diagnostic biomarkers for a range of neurological conditions. Cell-free DNA (cfDNA) is detected in CSF and differences in the concentration of cell-free mitochondrial DNA have been reported in studies of neurodegenerative disorders including Alzheimer's disease (AD). However, the in-fluence of pre-analytical steps has not been investigated for cfDNA in CSF and there is no standardised approach for quantification of total cfDNA (copies of nuclear genome or mitochondria-derived gene targets). In this study, the suitability of four extraction methods was evaluated: QIAamp Circulating Nucleic Acid (Qiagen), Quick-cfDNA Serum & Plasma (Zymo), NucleoSnap (R) DNA Plasma (Macherey-Nagel) and Plasma/Serum Circulating DNA Purification Mini (Norgen) kits, for cfDNA extraction from CSF of controls and AD dementia patients, utilising a spike-in control for extraction efficiency and fragment size. One of the optimal extraction methods was applied to a comparison of cfDNA concentrations in CSF from control subjects, AD dementia and primary and secondary brain tumour patients. Extraction efficiency based on spike-in recovery was similar in all three groups whilst both endogenous mitochondrial and nucleus-derived cfDNA was significantly higher in CSF from cancer patients compared to control and AD groups, which typically contained < 100 genome copies/mL. This study shows that it is feasible to measure low concentration nuclear and mitochondrial gene targets in CSF and that normalisation of extraction yield can help control pre-analytical variability influencing biomarker measurements

    Low copy number of the salivary amylase gene predisposes to obesity

    Get PDF
    International audienceCommon multi-allelic copy number variants (CNVs) appear enriched for phenotypic associations compared to their biallelic counterparts1,2,3,4. Here we investigated the influence of gene dosage effects on adiposity through a CNV association study of gene expression levels in adipose tissue. We identified significant association of a multi-allelic CNV encompassing the salivary amylase gene (AMY1) with body mass index (BMI) and obesity, and we replicated this finding in 6,200 subjects. Increased AMY1 copy number was positively associated with both amylase gene expression (P = 2.31 × 10−14) and serum enzyme levels (P 9) and bottom (copy number < 4) 10% of the copy number distribution. Our study provides a first genetic link between carbohydrate metabolism and BMI and demonstrates the power of integrated genomic approaches beyond genome-wide association studies
    corecore