37 research outputs found

    Comparative analysis of somitogenesis related genes of the hairy/Enhancer of split class in Fugu and zebrafish

    Get PDF
    BACKGROUND: Members of a class of bHLH transcription factors, namely the hairy (h), Enhancer of split (E(spl)) and hairy-related with YRPW motif (hey) (h/E(spl)/hey) genes are involved in vertebrate somitogenesis and some of them show cycling expression. By sequence comparison, identified orthologues of cycling somitogenesis genes from higher vertebrates do not show an appropriate expression pattern in zebrafish. The zebrafish genomic sequence is not available yet but the genome of Fugu rubripes was recently published. To allow comparative analysis, the currently known Her proteins from zebrafish were used to screen the genomic sequence database of Fugu rubripes. RESULTS: 20 h/E(spl)/hey-related genes were identified in Fugu, which is twice the number of corresponding zebrafish genes known so far. A novel class of c-Hairy proteins was identified in the genomes of Fugu and Tetraodon. A screen of the human genome database with the Fugu proteins yielded 10 h/E(spl)/hey-related genes. By analysing the upstream sequences of the c-hairy class genes in zebrafish, Fugu and Tetraodon highly similar sequence stretches were identified that harbour Suppressor of hairless paired binding sites (SPS). This motif was also discovered in the upstream sequences of the her1 gene in the examined fish species. Here, the Su(h) sites are separated by longer intervening sequences. CONCLUSIONS: Our study indicates that not all her homologues in zebrafish have been isolated. Comparison to the human genome suggests a selective duplication of h/E(spl) genes in pufferfish or loss of members of these genes during evolution to the human lineage

    Kondo engineering : from single Kondo impurity to the Kondo lattice

    Full text link
    In the first step, experiments on a single cerium or ytterbium Kondo impurity reveal the importance of the Kondo temperature by comparison to other type of couplings like the hyperfine interaction, the crystal field and the intersite coupling. The extension to a lattice is discussed. Emphasis is given on the fact that the occupation number nfn_f of the trivalent configuration may be the implicit key variable even for the Kondo lattice. Three (P,H,T)(P, H, T) phase diagrams are discussed: CeRu2_2Si2_2, CeRhIn5_5 and SmS

    Challenges in optics for Extremely Large Telescope instrumentation

    Full text link
    We describe and summarize the optical challenges for future instrumentation for Extremely Large Telescopes (ELTs). Knowing the complex instrumental requirements is crucial for the successful design of 30-60m aperture telescopes. After all, the success of ELTs will heavily rely on its instrumentation and this, in turn, will depend on the ability to produce large and ultra-precise optical components like light-weight mirrors, aspheric lenses, segmented filters, and large gratings. New materials and manufacturing processes are currently under study, both at research institutes and in industry. In the present paper, we report on its progress with particular emphasize on volume-phase-holographic gratings, photochromic materials, sintered silicon-carbide mirrors, ion-beam figuring, ultra-precision surfaces, and free-form optics. All are promising technologies opening new degrees of freedom to optical designers. New optronic-mechanical systems will enable efficient use of the very large focal planes. We also provide exploratory descriptions of "old" and "new" optical technologies together with suggestions to instrument designers to overcome some of the challenges placed by ELT instrumentation.Comment: (Proc. OPTICON Key Technology Network Workshop, Rome 20-21 October 2005

    Zebrafish Her8a Is Activated by Su(H)-Dependent Notch Signaling and Is Essential for the Inhibition of Neurogenesis

    Get PDF
    Understanding how diversity of neural cells is generated is one of the main tasks of developmental biology. The Hairy/E(spl) family members are potential targets of Notch signaling, which has been shown to be fundamental to neural cell maintenance, cell fate decisions, and compartment boundary formation. However, their response to Notch signaling and their roles in neurogenesis are still not fully understood. In the present study, we isolated a zebrafish homologue of hairy/E(spl), her8a, and showed this gene is specifically expressed in the developing nervous system. her8a is positively regulated by Su(H)-dependent Notch signaling as revealed by a Notch-defective mutant and injection of variants of the Notch intracellular regulator, Su(H). Morpholino knockdown of Her8a resulted in upregulation of proneural and post-mitotic neuronal markers, indicating that Her8a is essential for the inhibition of neurogenesis. In addition, markers for glial precursors and mature glial cells were down-regulated in Her8a morphants, suggesting Her8a is required for gliogenesis. The role of Her8a and its response to Notch signaling is thus similar to mammalian HES1, however this is the converse of what is seen for the more closely related mammalian family member, HES6. This study not only provides further understanding of how the fundamental signaling pathway, Notch signaling, and its downstream genes mediate neural development and differentiation, but also reveals evolutionary diversity in the role of H/E(spl) genes

    Analysis of her1 and her7 Mutants Reveals a Spatio Temporal Separation of the Somite Clock Module

    Get PDF
    Somitogenesis is controlled by a genetic network consisting of an oscillator (clock) and a gradient (wavefront). The “hairy and Enhancer of Split”- related (her) genes act downstream of the Delta/Notch (D/N) signaling pathway, and are crucial components of the segmentation clock. Due to genome duplication events, the zebrafish genome, possesses two gene copies of the mouse Hes7 homologue: her1 and her7. To better understand the functional consequences of this gene duplication, and to determine possible independent roles for these two genes during segmentation, two zebrafish mutants her1hu2124 and her7hu2526 were analyzed. In the course of embryonic development, her1hu2124 mutants exhibit disruption of the three anterior-most somite borders, whereas her7hu2526 mutants display somite border defects restricted to somites 8 (+/−3) to 17 (+/−3) along the anterior-posterior axis. Analysis of the molecular defects in her1hu2124 mutants reveals a her1 auto regulatory feedback loop during early somitogenesis that is crucial for correct patterning and independent of her7 oscillation. This feedback loop appears to be restricted to early segmentation, as cyclic her1 expression is restored in her1hu2124 embryos at later stages of development. Moreover, only the anterior deltaC expression pattern is disrupted in the presomitic mesoderm of her1hu2124 mutants, while the posterior expression pattern of deltaC remains unaltered. Together, this data indicates the existence of an independent and genetically separable anterior and posterior deltaC clock modules in the presomitic mesdorm (PSM)

    Optimization of atmospheric plasma treatment of LDPE films: Influence on adhesive properties and ageing behavior

    Full text link
    One of the major disadvantages of low density polyethylene (LDPE) films is their poor adhesive properties. Therefore, LDPE films have been treated with atmospheric pressure air plasma in order to improve their surface properties. So as to simulate the possible conditions in an industrial process, the samples have been treated with two different sample distances (6 and 10 mm), and treatment rates between 100 and 1000 mm s-1. The different sample distances are the distance of the sample from the plasma source. The variation of the surface properties and adhesion characteristics of the films were investigated for different aging times after plasma exposure (up to 21 days) using contact angle measurement, atomic force microscopy, weight loss measurements and shear test. Results show that the treatment increases the polar component () and these changes improve adhesive properties of the material. After the twenty-first day, the ageing process causes a decrease of wettability and adhesive properties of the LDPE films (up to 60%).Fombuena Borrás, V.; García Sanoguera, D.; Sánchez Nacher, L.; Balart Gimeno, RA.; Boronat Vitoria, T. (2014). Optimization of atmospheric plasma treatment of LDPE films: Influence on adhesive properties and ageing behavior. Journal of Adhesion Science and Technology. 28(1):97-113. doi:10.1080/01694243.2013.847045S97113281Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536-542. doi:10.1016/j.jhazmat.2007.06.076Friedman, M., & Walsh, G. (2002). High performance films: Review of new materials and trends. Polymer Engineering & Science, 42(8), 1756-1788. doi:10.1002/pen.11069Wiles, D. M., & Scott, G. (2006). Polyolefins with controlled environmental degradability. Polymer Degradation and Stability, 91(7), 1581-1592. doi:10.1016/j.polymdegradstab.2005.09.010Gao, J., Lei, J., Li, Q., & Ye, S. (2004). Functionalized low-density polyethylene via a novel photografting method and its adhesion properties. Journal of Adhesion Science and Technology, 18(2), 195-203. doi:10.1163/156856104772759403Shenton, M. J., Lovell-Hoare, M. C., & Stevens, G. C. (2001). Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. Journal of Physics D: Applied Physics, 34(18), 2754-2760. doi:10.1088/0022-3727/34/18/307Belgacem, M. N., Salon-Brochier, M. C., Krouit, M., & Bras, J. (2011). Recent Advances in Surface Chemical Modification of Cellulose Fibres. Journal of Adhesion Science and Technology, 25(6-7), 661-684. doi:10.1163/016942410x525867Friedrich, J., Unger, W., & Lippitz, A. (1995). Plasma modification of polymer surfaces. Macromolecular Symposia, 100(1), 111-115. doi:10.1002/masy.19951000118Ladizesky, N. H., & Ward, I. M. (1989). The adhesion behaviour of high modulus polyethylene fibres following plasma and chemical treatment. Journal of Materials Science, 24(10), 3763-3773. doi:10.1007/bf02385768Nardin, M., & Ward, I. M. (1987). Influence of surface treatment on adhesion of polyethylene fibres. Materials Science and Technology, 3(10), 814-826. doi:10.1179/mst.1987.3.10.814Villagra Di Carlo, B., Gottifredi, J. C., & Habert, A. C. (2010). Synthesis and characterization of composite membrane by deposition of acrylic acid plasma polymer onto pre-treated polyethersulfone support. Journal of Materials Science, 46(6), 1850-1856. doi:10.1007/s10853-010-5012-4Matsunaga, M., & Whitney, P. J. (2000). Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonisation. Polymer Degradation and Stability, 70(3), 325-332. doi:10.1016/s0141-3910(00)00105-1Novák, I., Pollák, V., & Chodák, I. (2006). Study of Surface Properties of Polyolefins Modified by Corona Discharge Plasma. Plasma Processes and Polymers, 3(4-5), 355-364. doi:10.1002/ppap.200500163Arpagaus, C., Rossi, A., & Rudolf von Rohr, P. (2005). Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor – process, wettability improvement and ageing effects. Applied Surface Science, 252(5), 1581-1595. doi:10.1016/j.apsusc.2005.02.099Morra, M., Occhiello, E., Marola, R., Garbassi, F., Humphrey, P., & Johnson, D. (1990). On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Science, 137(1), 11-24. doi:10.1016/0021-9797(90)90038-pKim, K. S., Ryu, C. M., Park, C. S., Sur, G. S., & Park, C. E. (2003). Investigation of crystallinity effects on the surface of oxygen plasma treated low density polyethylene using X-ray photoelectron spectroscopy. Polymer, 44(20), 6287-6295. doi:10.1016/s0032-3861(03)00674-8Kim, S. H., Ha, H. J., Ko, Y. K., Yoon, S. J., Rhee, J. M., Kim, M. S., … Khang, G. (2007). Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. Journal of Biomaterials Science, Polymer Edition, 18(5), 609-622. doi:10.1163/156856207780852514Borcia, G., Anderson, C. A., & Brown, N. M. D. (2004). The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I. Applied Surface Science, 221(1-4), 203-214. doi:10.1016/s0169-4332(03)00879-1Pascual, M., Calvo, O., Sanchez-Nácher, L., Bonet, M. A., Garcia-Sanoguera, D., & Balart, R. (2009). Optimization of adhesive joints of low density polyethylene (LDPE) composite laminates with polyolefin foam using corona discharge plasma. Journal of Applied Polymer Science, 114(5), 2971-2977. doi:10.1002/app.30906Encinas, N., Díaz-Benito, B., Abenojar, J., & Martínez, M. A. (2010). Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surface and Coatings Technology, 205(2), 396-402. doi:10.1016/j.surfcoat.2010.06.069Takke, V., Behary, N., Perwuelz, A., & Campagne, C. (2009). Studies on the atmospheric air-plasma treatment of PET (polyethylene terephtalate) woven fabrics: Effect of process parameters and of aging. Journal of Applied Polymer Science, 114(1), 348-357. doi:10.1002/app.30618Awaja, F., Gilbert, M., Kelly, G., Fox, B., & Pigram, P. J. (2009). Adhesion of polymers. Progress in Polymer Science, 34(9), 948-968. doi:10.1016/j.progpolymsci.2009.04.007Garcia, D., Sanchez, L., Fenollar, O., Lopez, R., & Balart, R. (2008). Modification of polypropylene surface by CH4–O2 low-pressure plasma to improve wettability. Journal of Materials Science, 43(10), 3466-3473. doi:10.1007/s10853-007-2322-2Guimond, S., & Wertheimer, M. R. (2004). Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. Journal of Applied Polymer Science, 94(3), 1291-1303. doi:10.1002/app.21134Pascual, M., Balart, R., Sánchez, L., Fenollar, O., & Calvo, O. (2008). Study of the aging process of corona discharge plasma effects on low density polyethylene film surface. Journal of Materials Science, 43(14), 4901-4909. doi:10.1007/s10853-008-2712-0Sanchis, R., Fenollar, O., García, D., Sánchez, L., & Balart, R. (2008). Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. International Journal of Adhesion and Adhesives, 28(8), 445-451. doi:10.1016/j.ijadhadh.2008.04.002Fresnais, J., Chapel, J. P., Benyahia, L., & Poncin-Epaillard, F. (2009). Plasma-Treated Superhydrophobic Polyethylene Surfaces: Fabrication, Wetting and Dewetting Properties. Journal of Adhesion Science and Technology, 23(3), 447-467. doi:10.1163/156856108x370127Abenojar, J., Colera, I., Martínez, M. A., & Velasco, F. (2010). Study by XPS of an Atmospheric Plasma-Torch Treated Glass: Influence on Adhesion. Journal of Adhesion Science and Technology, 24(11-12), 1841-1854. doi:10.1163/016942410x507614Lommatzsch, U., Pasedag, D., Baalmann, A., Ellinghorst, G., & Wagner, H.-E. (2007). Atmospheric Pressure Plasma Jet Treatment of Polyethylene Surfaces for Adhesion Improvement. Plasma Processes and Polymers, 4(S1), S1041-S1045. doi:10.1002/ppap.200732402Balu, B., Berry, A. D., Patel, K. T., Breedveld, V., & Hess, D. W. (2011). Directional Mobility and Adhesion of Water Drops on Patterned Superhydrophobic Surfaces. Journal of Adhesion Science and Technology, 25(6-7), 627-642. doi:10.1163/016942410x525849Bhattacharya, S., Singh, R. K., Mandal, S., Ghosh, A., Bok, S., Korampally, V., … Gangopadhyay, S. (2010). Plasma Modification of Polymer Surfaces and Their Utility in Building Biomedical Microdevices. Journal of Adhesion Science and Technology, 24(15-16), 2707-2739. doi:10.1163/016942410x511105Das, S., Neogi, S., Chainy, G. B. N., & Guha, S. K. (2011). A Novel Two-Step Procedure for Plasma Surface Modification of Low-Density Polyethylene for Improved Drug Adhesion in Intra Uterine Devices (IUDs). Journal of Adhesion Science and Technology, 25(1-3), 151-167. doi:10.1163/016942410x503285Schulz, U., Munzert, P., & Kaiser, N. (2010). Plasma Surface Modification of PMMA for Optical Applications. Journal of Adhesion Science and Technology, 24(7), 1283-1289. doi:10.1163/016942409x12561252292026Silverstein, M. S., Breuer, O., & Dodiuk, H. (1994). Surface modification of UHMWPE fibers. Journal of Applied Polymer Science, 52(12), 1785-1795. doi:10.1002/app.1994.070521213Inagaki, N., Narushim, K., Tuchida, N., & Miyazaki, K. (2004). Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces. Journal of Polymer Science Part B: Polymer Physics, 42(20), 3727-3740. doi:10.1002/polb.20234Nakamatsu, J., Delgado-Aparicio, L. F., Da Silva, R., & Soberon, F. (1999). Ageing of plasma-treated poly(tetrafluoroethylene) surfaces. Journal of Adhesion Science and Technology, 13(7), 753-761. doi:10.1163/156856199x00983Yun, Y. I., Kim, K. S., Uhm, S.-J., Khatua, B. B., Cho, K., Kim, J. K., & Park, C. E. (2004). Aging behavior of oxygen plasma-treated polypropylene with different crystallinities. Journal of Adhesion Science and Technology, 18(11), 1279-1291. doi:10.1163/1568561041588200Morent, R., De Geyter, N., Leys, C., Gengembre, L., & Payen, E. (2007). Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surface and Coatings Technology, 201(18), 7847-7854. doi:10.1016/j.surfcoat.2007.03.018Zhao, B., & Kwon, H. J. (2011). Adhesion of Polymers in Paper Products from the Macroscopic to Molecular Level — An Overview. Journal of Adhesion Science and Technology, 25(6-7), 557-579. doi:10.1163/016942410x52582

    A Positive Regulatory Loop between foxi3a and foxi3b Is Essential for Specification and Differentiation of Zebrafish Epidermal Ionocytes

    Get PDF
    BACKGROUND: Epidermal ionocytes play essential roles in the transepithelial transportation of ions, water, and acid-base balance in fish embryos before their branchial counterparts are fully functional. However, the mechanism controlling epidermal ionocyte specification and differentiation remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: In zebrafish, we demonstrated that Delta-Notch-mediated lateral inhibition plays a vital role in singling out epidermal ionocyte progenitors from epidermal stem cells. The entire epidermal ionocyte domain of genetic mutants and morphants, which failed to transmit the DeltaC-Notch1a/Notch3 signal from sending cells (epidermal ionocytes) to receiving cells (epidermal stem cells), differentiates into epidermal ionocytes. The low Notch activity in epidermal ionocyte progenitors is permissive for activating winged helix/forkhead box transcription factors of foxi3a and foxi3b. Through gain- and loss-of-function assays, we show that the foxi3a-foxi3b regulatory loop functions as a master regulator to mediate a dual role of specifying epidermal ionocyte progenitors as well as of subsequently promoting differentiation of Na(+),K(+)-ATPase-rich cells and H(+)-ATPase-rich cells in a concentration-dependent manner. CONCLUSIONS/SIGNIFICANCE: This study provides a framework to show the molecular mechanism controlling epidermal ionocyte specification and differentiation in a low vertebrate for the first time. We propose that the positive regulatory loop between foxi3a and foxi3b not only drives early ionocyte differentiation but also prevents the complete blockage of ionocyte differentiation when the master regulator of foxi3 function is unilaterally compromised
    corecore