
 Eindhoven University of Technology

MASTER

Conditional Linear Cryptanalysis of the Advanced Encryption Standard

Takke, Erik C.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f2e0c58a-3954-4d43-a1d9-c2d2cac1ad41

Department of Mathematics and Computer Science
Coding Theory and Cryptology

Conditional Linear Cryptanalysis of the
Advanced Encryption Standard
Master’s thesis

E.C. Takke

29 September 2022

Supervision: Assessment committee:
T. Ashur T. Ashur
B. Škorić B. Škorić

A. Ravagnani

Credits: 45

This is a public Master’s thesis.

This Master’s thesis has been carried out in accordance with the rules of the TU/e
Code of Scientific Conduct.

Abstract

We develop two novel techniques to approximate a vectorial Boolean function; the weighted approximation and
conditional approximation. When applied to the inversion function on F28 , both of these approximations yield a
greater correlation than a traditional, linear approximation. Since this inversion function is used in abundance in the
Advanced Encryption Standard, it is shown how the conditional approximation technique can be used to construct
a statistical distinguisher for four-round AES in the known-plaintext model. The existence of this distinguisher was
previously ruled out on the basis of a security argument of the Wide Trail Strategy — the framework underlying
the AES’s design — and thus demonstrates a caveat with this argument. In addition to a distinguishing attack, a
novel key-recovery attack is launched, capable of extracting 32 bits of the key using only 2125.62 data.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Notation . 4
2.2 Cryptographic primitives . 5
2.3 The Advanced Encryption Standard . 6

2.3.1 History . 6
2.3.2 Structure . 6
2.3.3 SubBytes (SB) . 7
2.3.4 ShiftRows (SR) . 7
2.3.5 MixColumns (MC) . 8

2.4 Cryptanalysis . 8
2.4.1 Attack model . 8
2.4.2 Complexity . 9
2.4.3 Attack type . 9

2.5 Linear Cryptanalysis . 9
2.5.1 The goal . 10
2.5.2 Constructing a linear approximation . 10
2.5.3 Linear attacks . 11
2.5.4 Complexity . 12
2.5.5 Extensions . 14

3 Analysis of the inversion function 15
3.1 Linear Approximations of the inversion function . 15
3.2 Novel approximation methods . 16

3.2.1 Weighted approximation . 16
3.2.2 Conditional approximation . 18

3.3 Composition with affine transformations . 22
3.3.1 Weighted Approximation . 22
3.3.2 Conditional Approximation . 24

4 Application to 4-round AES 27
4.1 The Wide Trail Strategy . 27
4.2 Constructing the distinguisher . 28

4.2.1 Strategy . 28
4.2.2 Linear approximations for the round function . 29
4.2.3 A 1-round conditional linear trail . 30

4.3 Attacking four-round AES . 32
4.3.1 Distinguishing attack . 33
4.3.2 Key-recovery attack . 33

4.4 Experimental validation . 34
4.4.1 Results . 35

5 Conclusion 37

1

5.1 Future Work . 37

A Proofs 42

B Look up table AES s-box 46

C MDS matrix 48

D Masks 49

E Experiment code 51

2

Chapter 1

Introduction

Communication is an essential part to our daily lives that increasingly takes place in the digital space. Although
it has many advantages, a major disadvantage of the internet in this regard is the relative ease with which a
third party is able to observe any and all data that is sent across the network. To prevent any such party from
reading along with what is communicated, the vast majority of internet traffic today is encrypted before sending
and decrypted upon receipt. Under the assumption that it is not possible to retrieve any information about the
original message from its encryption without knowing the encryption key, this method guarantees secrecy of the
message, thus enabling a private conversation.

Cryptanalysis plays a critical part in validating this assumption. This field of research investigates existing en-
cryption methods and attempts to develop techniques to break the secrecy guarantee. The rationale behind this
research is that, even though it is preferable that no such techniques are ever discovered, we prefer to find them
ourselves and take appropriate action before a malicious third party manages to exploit them for their own gain.

In this thesis we add to the cryptanalysis of the Advanced Encryption Standard (AES) [17]: a prevalent encryption
algorithm that finds its use in a variety of protocols and applications, including Transport Layer Security (TLS),
Wi-Fi, Bluetooth, and debit and credit card payments [39]. In particular, we construct a statistical distinguisher
for AES reduced to four rounds; to our knowledge the first of its kind for this cipher. In addition to demonstrating
that this round-reduced cipher is vulnerable to a linear attack, this distinguisher exposes an inherent weakness of
the Wide Trail Strategy — the framework underlying the cipher’s design. As such, this distinguisher does not only
pose a threat against encryption algorithms incorporating 4-round AES as a subroutine, but also against other
ciphers constructed using this strategy.

Working towards creating this distinguisher, we start with bringing the reader up to speed with notation used
throughout and concepts that lie at the core of this work in Chapter 2. This includes a brief overview of the AES
encryption algorithm and as well as an introduction to Linear Cryptanalysis. In Chapter 3, we recall the linear
properties of the inversion function on finite fields. This function forms the only source of non-linear behaviour in
the AES cipher and has the purpose of thwarting statistical attacks, relying, e.g., on linear cryptanalysis. Following
this, the weighted approximation and conditional approximation techniques are presented, which outperform the
traditional linear approximation technique when applied to the inversion function. The implications of this result for
the AES are presented in Chapter 4. This starts with recalling the Wide Trail Strategy and the security argument
it puts forth, and is followed by the construction of the distinguisher and subsequently a distinguishing attack. It
is furthermore demonstrated how the distinguisher can be adapted to construct a key-recovery attack capable of
retrieving 32 bits of information using 2125.61 data. This chapter is then closed by the experimental validation of
the discovered distinguisher. This thesis concludes with Chapter 5, where the broader implications of this attack
are discussed and research directions for future work are proposed.

3

Chapter 2

Preliminaries

We briefly introduce the notation used throughout this thesis and the concepts that lie at its foundation.

2.1 Notation
In introducing the notation, it is assumed that the reader is acquainted with the concepts of finite fields and vector
spaces. An introduction to these concepts can be found in [34]. We refer to [17] for an introduction to their
application in the domain of Linear Cryptanalysis.

Let F2 denote the unique finite field on two elements, which we denote by 0 and 1. We will specifically refer to
this field as the binary field and call an element in its underlying group a bit. We use ⊕ : F2 → F2 to denote the
addition operation on this field, which is commonly referred to as the exclusive-or or xor function; ∧ : F2 → F2 is
used to denote the multiplication operation, which is also known as the and operation. We use F2m to denote the
finite field on 2m elements, which we represent with bit-strings of length m. To shorten the notation of these bit
strings, we make use of the hexadecimal numeral system. This system represents the element 10100111b ∈ F28 as
A7x, for example. In the special case that m = 8, we refer to the elements in the group underlying F2m as bytes.

The n-dimensional vector space over F2m is denoted by Fn
2m . For a vector v ∈ Fn

2m , vi ∈ F2m is used to indicate the
ith coefficient of v, with 1 ≤ i ≤ n. The operator ⊕ : Fn

2m × Fn
2m → Fn

2m is used to denote the addition of vectors
and is defined as a ⊕ b := (a1 + b1, a2 + b2, . . . , an + bn), where a, b ∈ Fn

2m are two n-dimensional vectors and +
denotes the addition operation in the underlying field. Note that ⊕ is used to denote both addition on F2 as well
as Fn

2m . Moving forward, it will be clear from context which of the two is applied. Note furthermore that Fn
2 is

isomorphic to F2n , as illustrated by the isomorphism F2n → Fn
2 : bn · · · b2b1 7→ (bn, . . . , b2, b1).

A vectorial Boolean function F : Fn
2 → Fm

2 with n, m ∈ N+ maps an n-dimensional bit-vector to an m-dimensional
bit-vector. When n = m and F is invertible, F is called a permutation. In the special case that m = 1, the
function f : Fn

2 → F2 is said to be a Boolean function. Note that a vectorial Boolean function F : Fn
2 → Fm

2 can be
viewed as a vector of Boolean functions (f1, . . . , fm) acting on the same input, with fi : Fn

2 → F2 for i = 1, . . . , m.
We commonly represent Boolean functions with lowercase letters, while capital letters are used to represent their
vectorial counterpart.

A binary function F : Fn
2 ×Fm

2 → Fr
2, with n, m, r ∈ N+, is a vectorial Boolean function that receives two bit-vectors

and returns a third. A relevant example of such a function is the inner product a⊤x : Fn
2 × Fn

2 → F2. For vectors
a, x ∈ Fn

2 , this product is defined as a⊤x := a1 ∧ x1 ⊕ . . . ⊕ an ∧ xn. Note that this value expresses the parity of
the bits xi for which ai = 1. Observe moreover that a⊤x can be viewed as a Boolean function on x when the value
of a is fixed. We refer to this particular family of functions as the parity functions. When discussing these parity
functions, we commonly refer to a as the mask of x.

An important property of the parity functions is their linearity. A Boolean function f : Fn
2 → F2 is linear if

f(x ⊕ y) = f(x) ⊕ f(y) for all x, y ∈ Fn
2 . Analogously, a vectorial Boolean function F : Fn

2 → Fm
2 is said to be linear

when all Boolean functions f1, . . . , fm : Fn
2 → F2 composing it are linear. Since the parity functions are the only

Boolean functions that are linear, there thus exist u1, . . . , um ∈ Fn
2 such that this function F can be decomposed

4

into a vector of functions (u⊤
1 x, . . . , u⊤

mx). Observe moreover that for the matrix MF ∈ Fm×n
2 where ui equals the

ith row in M , F (x) = MF x for all x ∈ Fn
2 .

Another important property of the parity functions relates to their imbalance [9]. The imbalance of a Boolean
function f : Fn

2 → F2 is defined as

Imb(f) := |{x ∈ Fn
2 | f(x) = 0}| − |{x ∈ Fn

2 | f(x) = 1}|
2 = 1

2
∑

x∈Fn
2

(−1)f(x), (2.1)

where | · | maps a set to its size. When the imbalance of a function is 0, it is said to be balanced. In Lemma 2.1 it is
demonstrated that the parity functions a⊤x with a ̸= 0 are balanced. Here, δ is used to denote the kronecker-delta
function, which equals 1 if the input is zero and 0 otherwise.

Lemma 2.1 (Balanced function). Let n ∈ N+ and a ∈ Fn
2 be arbitrary. It holds that Imb(a⊤x) = δ(a) · |Fn

2 |
2 .

Proof. The proof of this lemma is deferred to Appendix A.

The correlation between two Boolean functions f, g : Fn
2 → F2 is defined as C(f, g) := 2 · P[f(x) = g(x)] − 1, where

the probability is taken over all x ∈ Fn
2 . When the correlation between two functions is 0, these functions are said

to be uncorrelated. Given an input mask u ∈ Fn
2 and output mask v ∈ Fm

2 , the correlation between the masked
input and output of a vectorial Boolean function F : Fn

2 → Fm
2 is expressed as

C(u⊤x, v⊤F (x)) = 2 · P
[
u⊤x ⊕ v⊤F (x) = 0

]
− 1. (2.2)

We use CF to denote the correlation matrix of F [12]. In this matrix, entry CF
v,u is defined as C(u⊤x, v⊤F (x)) and

thus acts as convenient short-hand notation for this correlation. By applying the Walsh-Hadamard transform to F ,
an equation is found that provides convenient means for computing CF

v,u. We present this result in more generalized
form in Lemma 2.2.

Lemma 2.2. Let f, g : Fn
2 → F2 be arbitrary Boolean functions. The correlation C(f, g) of these two functions can

be computed as
C(f, g) = 1

|Fn
2 |
∑

x∈Fn
2

(−1)f(x)⊕g(x). (2.3)

Proof. The proof of this lemma is deferred to Appendix A.

It follows from this lemma that CF
v,w can be computed as

CF
v,u = C(u⊤x, v⊤F (x)) = 1

|Fn
2 |
∑

x∈Fn
2

(−1)u⊤x⊕v⊤F (x). (2.4)

2.2 Cryptographic primitives
This work operates in the field of symmetric-key cryptography. In this field of research a wide variety of cryptographic
primitives is used, including but not limited to cryptographic hash functions, stream ciphers and block ciphers.
Although the results of this thesis could find use for multiple of these primitives, we restrict ourselves to discussing
the implications for block ciphers.

The block cipher is a variation on the product cipher introduced by Shannon [55] operating on fixed-length Boolean
vectors called blocks. More formally, we define a block cipher as a pair of vectorial Boolean functions (E, D) with
E, D : Fn

2 × Fκ
2 → Fn

2 . In this tuple, E is called the encryption function and D the decryption function. When
y = E(x, k), we refer to x ∈ Fn

2 as the plaintext, k ∈ Fκ
2 as the master key and y ∈ Fn

2 as the ciphertext of x under
key k. The encryption and decryption functions form each others functional inverses as D(E(x, k), k) = x holds for
all x and k. We introduce Ek(x) = E(x, k) and Dk(x) = D(x, k) as shorthand notation for these functions, which
allows this inversion relation to be expressed more clearly as Dk ≡ E−1

k for all k.

A relevant variant of the block cipher is the iterated block-cipher. For ciphers of this form, the encryption function
Ek can be conveniently described as Ek = Fkr ◦ · · · ◦ Fk1 ; the repeated application of a vectorial Boolean function

5

Fki(x) = F (x, ki) : Fn
2 × Fκ′

2 → Fn
2 . Here, each invocation of F is referred to as a round and hence F is called the

round function of the cipher; the keys ki ∈ Fκ′

2 for Fki
are referred to as round keys. Often, an r-round iterated block

cipher is bundled with a Key Expansion Algorithm (KEA) used to extract the round keys ki from the master key k.
Note that the size κ′ of the round keys may differ from the size κ of the master key. It is moreover commonplace
to add a key whitening [53] step to the cipher, where the encryption is then computed as y = kr+1 ⊕ Ek(x ⊕ k0).

We mention two important subcategories of the iterated block cipher. First is the key-alternating block cipher.
For ciphers in this category, the round function can be decomposed into a function F , the behaviour of which is
independent of the key, and a function Xk adding the round key k to the state according to some addition operation.
Second is the Substitution-Permutation Network (SPN) [20]. In an SPN, the round function Fk can be decomposed
into the consecutive application of a non-linear substitution function S, and a linear permutation function P .

2.3 The Advanced Encryption Standard
We introduce the standardized version of the Rijndael block cipher [17], which is better known as the Advanced
Encryption Standard, or AES [18]. We commence with a brief summary of its history and follow this up with a
high-level overview of the cipher structure. Lastly, the three functions that lie at the heart of the algorithm are
expanded upon.

2.3.1 History
Shortly after Matsui broke DES in 1993 [35], the U.S. National Institute of Standards and Technology (NIST)
enlisted help from the public in “specifying an encryption algorithm capable of protecting sensitive government
information well into the 21st century” [43], which attracted fifteen contestants. Following the end of the submission
phase, NIST invited the public to analyse and attack the competitors. Based on these analyses and attacks it
was decided to release ten contestants from the competition, allowing cryptanalysts to focus on the five finalists.
Following this second round of rigorous testing, NIST ultimately decided in October 2000 to base their Advanced
Encryption Standard (AES) [18] on the Rijndael cipher [17]. This block-cipher, designed by Belgian cryptographers
Daemen and Rijmen, was chosen for its high level of security, while not compromising on speed and versatility
across various platforms. Since its official release in 2001, AES has seen increased use over the years, making it a
widely used encryption standard today [39].

2.3.2 Structure
The AES is a block cipher best described as an r-round key-alternating substitution-permutation network. Its
encryption function can be expressed as the composition

AESr
k := Akr ◦ RF′ ◦ Akr−1 ◦ RF ◦ · · · ◦ RF ◦ Ak1 ◦ RF ◦ Ak0 , (2.5)

where RF, RF′ : F128
2 → F128

2 denote the round functions and Aki
: F128

2 → F128
2 : x 7→ x ⊕ ki denotes the addition of

round key ki. In the first r − 1 rounds, the round function RF is used, while the last round applies RF’. Here, RF
involves the consecutive application of the three vectorial Boolean functions SubBytes, ShiftRows and MixColumns,
while RF′ is only composed of the functions SubBytes and ShiftRows. To simplify the discussion, it will be assumed
from this point forward that the round function RF is used for all rounds. The addition of MixColumns to this last
round will not affect the results presented in this thesis.

The standardized cipher specifies three AES variants — AES-128, AES-192 and AES-256 — differing in two aspects.
First, the variants involve a different number of rounds r, namely 10, 12 and 14 respectively. Second, the length of
the master key k used are 128, 192 and 256 bits. AES includes a specification for the key expansion algorithm used
to generate the individual round keys ki from the master key. In Chapter 4 we will use the fact that the algorithm
reuses the master key as initial round key k0 for AES-128. Further details of the algorithm will not be investigated
in this work. Instead, it is assumed that the round keys generated by this algorithm are statistically independent.
This assumption is commonly known as the stochastic equivalence hypothesis [32].

In the following, a brief review of the SubBytes, ShiftRows and MixColumns functions is provided and their
application is illustrated. In these illustrations, it is most convenient to represent the plaintext, ciphertext and any
intermediate encryption state using a 4×4 byte matrix. An example of this representation is provided in Figure 2.1.
This example demonstrates that the 128-bit state may additionally be viewed as a vector (p0, . . . , p15) ∈ F16

28

6

storing the elements of the matrix in column-major order. Since the inverse functions of SubBytes, ShiftRows and
MixColumns follow trivially from their definitions, these will not be discussed.

p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

Figure 2.1: A convenient representation of the AES state.

2.3.3 SubBytes (SB)
The vectorial Boolean function SubBytes : F128

2 → F128
2 forms the substitution part of this SPN. It transforms the

state by applying the same substitution function S : F8
2 → F8

2 to each byte. We will often refer to this function
as the AES s-box. A visual representation of the operation is shown in Figure 2.2. The s-box S involves the

SubBytes:

p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

7→

S(p0) S(p4) S(p8) S(p12)

S(p1) S(p5) S(p9) S(p13)

S(p2) S(p6) S(p10) S(p14)

S(p3) S(p7) S(p11) S(p15)

Figure 2.2: Illustration of the application of SubBytes to the state.

consecutive application of the three vectorial Boolean functions inv, L and T. The function inv : F28 → F28

maps each element in F28 \ {0} to its multiplicative inverse, and 0 to itself. The reduction modulus used for this
inverse operation is m := 100011011b, which was chosen by the designers due to [34, 45]. Following inv, the
linear transformation L is applied to the state, which is best described as a vectorial Boolean function F8

2 → F8
2.

The matrix ML associated with L is listed in Equation 2.6. The third component in the composition is the affine
translation T : F8

2 → F8
2 : x 7→ x ⊕ 63x.

ML =

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

(2.6)

The SubBytes function is the only non-linear component contained in the round function RF. As such, one of its
purposes is to thwart linear cryptanalysis against the cipher. It is in particular the properties of the non-linear
function inv that deter linear attacks. Because we will analyse the linear properties of the inv function, it may be
more insightful to ignore the algebraic structure underlying this function and instead view it as a look up table.
The tables for both inv and S can be found in Appendix B.

2.3.4 ShiftRows (SR)
The ShiftRows operation is a linear function permuting the bytes in the state. Together with the MixColumns
function, this operation forms the permutation part of the substitution-permutation network. As illustrated in
Figure 2.3, this operation cyclically shifts the bytes in the ith row of the state i steps to the left, where indexing
starts at the top row with 0. Note here that the top row is shifted 0 bytes to the left and thus remains unchanged,
while on the bottom row all bytes are cyclically shifted three places to the left.

7

ShiftRows:

p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

7→

p0 p4 p8 p12

p5 p9 p13 p1

p10 p14 p2 p6

p15 p3 p7 p11

Figure 2.3: Illustration of the application of ShiftRows to the state.

2.3.5 MixColumns (MC)
The MixColumns function is a linear operation forming the second half of the permutation part of this SPN. In the
setting of this thesis, this operation is best described as a linear transformation H : F32

2 → F32
2 that is applied to

each of the four 32-bit columns in the state. Since H is linear, there exists a matrix MH ∈ F32×32
2 s.t. H(x) = MHx for

all x ∈ F32
2 . This matrix it is presented in Appendix C and clearly illustrates the ‘mixing’ behavior of this function.

It shows in particular that each bit in the output is the linear combination of at least five and at most seven bits of
the input, where from each of the four bytes in the input at least one bit is used. We defer discussing the impact
of this function on the linear cryptanalysis of AES to Section 4.1.

2.4 Cryptanalysis
Edgar and Manz [19] define cryptanalysis as “the process of studying cryptographic systems to look for weaknesses
or leaks of information.” This field of research can be split into the analysis of the implementation of a cryptographic
system in software and hardware, and of the mathematics underlying the system. This thesis solely discusses the
latter applied to block ciphers.

The process of cryptanalysing the mathematics underlying a cipher can be split into two steps. The first step
involves uncovering a mathematical property of the cryptographic system that is unlikely to appear in a permutation
uniformly sampled from the set of all permutations [56]. This is then followed up by an attempt to exploit this
property to extract information about the cipher that should have been secret. When both steps are successful, an
attack against the cipher under investigation has been discovered. Next, three important aspects to an attack are
discussed: the model in which an attack resides, its complexity, and its type.

2.4.1 Attack model
The first aspect is the model in which the attack takes place [31, 56]. An attack model specifies the type of data
an adversary must have access to in order to successfully perform the attack. Below, four commonly recognized
models are presented, along with a brief description of the capabilities of the adversary in these models. Here,
the capabilities of the adversary are expanding from one model to the next, resulting in a hierarchy. Typically, an
attack is considered more severe when it can be performed in an attack model that is higher up in the list.

Known-ciphertext model. For attacks in the known-ciphertext model, it is assumed that the adversary only
has access to a source generating ciphertexts; it can only use these and any mathematical property of the system
to make their attack work. Although the model assumes that the adversary does not have access to the plaintexts
corresponding with these ciphertexts, it is often still possible to make reasonable assumptions about the plaintexts
based on the source from which they originate. For example, the adversary could make assumptions on the alphabet
that the plaintexts are written in, based on the geoposition of the source.

Known-plaintext model. The known-plaintext model assumes the adversary has means to obtain arbitrary
pairs of plaintext and ciphertexts, and subsequently leverage these in the attack. When used in practice, it is often
the case that the situation allows part of the plaintext to be guessed with a high degree of certainty. It is, for
example, often possible to correctly guess the value of certain header-fields of HTTP-packets [21].

Chosen-plaintext model. In this model it is assumed that the adversary additionally has access to a source
that can obtain the ciphertexts of any set of plaintexts they choose. However, it is assumed that the adversary

8

only has one attempt to perform all the encryptions and must thus select all plaintexts to which the ciphertext is
required ahead of observing the ciphertexts.

Adaptively chosen-plaintext model. This model is a subtle variation to the previous in that it assumes that
the adversary can perform the encryption step several times, allowing the adversary to adapt its choice of plaintext
to encrypt based on previous ciphertexts it received.

2.4.2 Complexity
The second aspect is the cost associated with performing an attack, which is directly linked to its complexity. This
complexity is commonly decomposed into the following three factors [25]:

• Time. The time it takes to perform the attack, usually expressed in the number of calls to the cipher under
attack.

• Memory. The amount of memory that is necessary to perform the attack, usually expressed in bytes.
• Data. The amount of data that is necessary to perform the attack.

Note that the smaller each of these three factors is, the cheaper it is to perform the attack. It is worth observing
that the data-complexity often acts as a lower bound to the time complexity, as it is assumed that all data must
be observed for the attack to succeed. Observe furthermore that the time and memory factors together allow us
to estimate the practicality of an attack. When an attack can be performed in a reasonable time frame using the
current state of technology, it is practical, while attacks whose resource requirements are beyond what is available
today only serve a theoretical purpose. One should, however, not forget that improvements to the analysis or to
the state of technology may make attacks that are only theoretical today a practical threat in the future. As holds
the truism: “attacks always get better, they never get worse.”

The complexity of an attack is commonly compared to that of an exhaustive key search. In this generic attack, the
adversary attempts to find the secret key by decrypting a small set of ciphertexts using all keys in the key space.
Since the adversary is certain to encounter the correct key at some point throughout the search, it is guaranteed
that the ciphertexts are eventually decrypted and thus the key found. The complexity of this attack therefore acts
as an upper bound for the complexity of attacks extracting any unknown information about the key; when an attack
exceeds this bound, it is no longer considered an attack.

2.4.3 Attack type
The third aspect we consider is the attack type [31]. In this thesis we will encounter two different types: a
distinguishing attack and a key-recovery attack. The goal of the former is to distinguish the cipher under investigation
from a random permutation. This attack is often modelled as a game, which starts with the challenger generating
a random bit, which they keep to themselves. Based on this bit, the challenger selects either the cipher under
investigation with an arbitrary master key, or a random permutation acting on the same block size. The adversary
is then tasked with determining the bit by analysing data samples it receives from the challenger. When the
adversary correctly guesses the bit’s value with probability strictly greater than 0.5, the adversary is said to have
found a distinguishing property of the cipher.

In a key-recovery attack, a similar game is played. Here, the challenger is restricted to using the cipher under
investigation, but may still generate a random master key, which they keep to themselves. The adversary again
requests data from the challenger and analyses this, with the intent to recover information about the key. The attack
is deemed successful when, using only information extracted from the data, the adversary is able to construct an
ordering on the keys in the key space, such that the actual key is located in the first half with probability greater
than 0.5.

2.5 Linear Cryptanalysis
In 1992, Matsui and Yamagishi [37] presented a novel cryptanalytic method for block ciphers. This method investi-
gates the existence of linear relations between bits of the plaintext, bits of the ciphertext and bits of the encryption
key, that hold with high probability. The presence of such relations in a cipher is undesirable, as the authors demon-
strate that these can be used to attack the cipher in the known-plaintext model. As an illustration of its usefulness,
the technique was applied to the FEAL cipher family [38], where for each member the attack proves capable of

9

extracting the encryption key significantly faster than an exhaustive search would. Matsui [35] later generalized the
technique to be applicable to all block-ciphers and named it Linear Cryptanalysis. To distinguish this method from
those that extended it over the years, we refer to the basic technique as standard Linear Cryptanalysis. To further
illustrate its power, the technique was used to launch an attack against the Data Encryption Standard (DES) [42]
— a cipher widely used at the time. This attack uncovered the full encryption key for 8-round DES using only
221 plaintext-ciphertext pairs, while only 247 pairs were required to extract the key when using full 16-round DES.
Both attacks are orders of magnitude faster than an exhaustive key search.

2.5.1 The goal
Linear Cryptanalysis is concerned with using linear methods to approximate part of the non-linear behaviour of
an encryption function. Standard Linear Cryptanalysis attempts to discover relations between bits of the plaintext
and bits of the ciphertext, which we refer to as linear approximations. For a block-cipher (Ek, Dk) operating on
n-bit blocks, the relation between a plaintext x and its ciphertext Ek(x) under key k is described by the equation

u⊤x = v⊤Ek(x), (2.7)

where the linear combination of plaintext bits masked by u ∈ Fn
2 is compared to the linear combination of bits in

the ciphertext masked by v ∈ Fn
2 . For a given key k, this equality holds with some probability

pk = P[u⊤x = v⊤Ek(x)] = P[u⊤x ⊕ v⊤Ek(x) = 0], (2.8)

where it is assumed that x is chosen uniformly at random from the plaintext space. We are interested in the
deviation of pk from 1

2 , which we capture with CEk
v,w := 2 · pk − 1; the correlation between the sum of selected

bits in the input and selected bits in the output of Ek. The goal of Linear Cryptanalysis is to discover a linear
approximation ⟨u, v⟩ for which the absolute correlation, or magnitude, with the encryption function Ek is large for
almost all keys [27, 35], as approximations of this type can be exploited to attack the encryption function under
investigation.

2.5.2 Constructing a linear approximation
When attempting to construct a linear approximations for block ciphers in general, computing the exact value of
the correlation associated with the approximation is the most difficult part [27]. However, this step is considerably
easier when only iterated block ciphers are concerned. It namely holds that linear approximations for such ciphers
are straightforwardly decomposed into a set of linear trails [5, 26, 35], which can be constructed iteratively.

Let Ek := Fkr
◦ · · · ◦ Fk1 denote an r-round iterated block cipher on n-bit blocks. Following [26], a linear trail

is defined as a mask tuple λ := (λ1, . . . , λr+1) ∈ (Fn
2)r+1 comprising the masks of r concatenated 1-round linear

approximations ⟨λi, λi+1⟩ for the individual round functions Fki
. Note that the output mask of the approximation

for round function Fki is the input mask for the approximation of Fki+1 . With k = (k1, . . . , kr) denoting the
encryption key, the correlation contribution of trail λ is computed as

Ck
λ =

r∏
i=1

C(λ⊤
i x, λ⊤

i+1Fki
(x)); (2.9)

the product of the correlations associated with the linear approximations of the individual rounds. It then follows
that the correlation of ⟨u, v⟩ over the block cipher is computed as

CEk
v,u =

∑
λ;λ1=u,λk+1=v

Ck
λ ; (2.10)

the sum of the correlation contributions of the linear trails sharing their input mask and output mask with the
linear approximation. This summation contains up to 2n(r−1) non-zero correlation contributions, illustrating that
further estimations are often necessary. Providing a closed form formula for such estimations is difficult for iterated
block ciphers in general, as no assumptions can be made regarding the influence of the round key on the correlation
of the 1-round approximation of each round function. When considering the more specific case of a key-alternating
block-cipher, we find that the key only influences the sign of a linear trail’s correlation contribution.

Let Ek := Xkr+1 ◦ F ◦ Xkr
◦ · · · ◦ Xk2 ◦ F ◦ Xk1 denote an r-round key-alternating block cipher on n-bit blocks,

where Xk : Fn
2 → Fn

2 : x 7→ x ⊕ k denotes the addition of round key k, and F : Fn
2 → Fn

2 denotes the round-function.

10

Observe that we can construct a linear trail for this function using (2r+1) single-round approximations, and compute
its correlation contribution using Equation 2.9. The expression of this equation can now be significantly simplified
due to a result in [16]. Here, it is demonstrated that the correlation of a linear approximation ⟨u, v⟩ for the key
addition function Xk is non-zero if and only if u = v. This result is recalled in Lemma 2.3.

Lemma 2.3 (Equation 7.34, [16]). Let Xk : Fn
2 → Fn

2 s.t. x 7→ x ⊕ k denote the affine translation for an arbitrary
k ∈ Fn

2 . It holds that
∀u, v ∈ Fn

2 \ {0} : CXk
v,u = (−1)v⊤k · δ(v ⊕ u). (2.11)

It follows from Lemma 2.3 and Equation 2.9 that the contribution of a linear trail is zero when it contains a 1-round
approximation ⟨a, b⟩ for a key addition function for which a ̸= b. It therefore suffices to restrict Equation 2.10 to the
trails for which these masks are the same. Note that such linear trails can be represented as λ = (λ1, . . . , λr+1) ∈
(Fn

2)r+1, where each ⟨λi, λi+1⟩ is an approximation for the ith application of F , and ⟨λi, λi⟩ is an approximation
for Xki

. It then follows that the contribution of this trail can be computed as

Ck
λ =

(
r+1∏
i=1

C
Xki

λi,λi

) r∏
j=1

CF
λj+1,λj

 =
(

r+1∏
i=1

(−1)λ⊤
i ki

) r∏
j=1

CF
λj+1,λj

 = (−1)
⊕r+1

i=1
λ⊤

i ki ·
r∏

j=1
CF

λj+1,λj
. (2.12)

When we use CF
λ :=

∏r
j=1 CF

λj+1,λj
and λ⊤k :=

⊕r+1
i=1 λ⊤

i ki, this is more compactly written as

Ck
λ = (−1)λ⊤k · CF

λ = (−1)λ⊤k · sgn(CF
λ) · |CF

λ |, (2.13)

where sgn : R → {−1, 1} denotes the signum-function. This equation confirms that only the sign of the correlation
is dependent on the key; the magnitude of a correlation contribution |CF

λ | is not treated as a random variable.

Matsui then approximates the correlation of the linear approximation ⟨u, v⟩ with the largest correlation contribution
magnitude among all trails [35], an estimation that is only reasonable when the summation in Equation 2.10 is
dominated by this largest contribution [46, 52]. When the summation contains multiple trails with large absolute
contribution, it is dependent on the key whether the signs of these contributions are the same or different, and thus
whether these contributions respectively amplify or cancel each other. As a result, the correlation magnitude of a
linear approximation fluctuates under changing encryption keys when this is the case. This undesirable effect is
best known as the linear hull effect [4, 41]. In order to proceed, one must thus assume this term to dominate the
summation; an assumption we refer to as the dominant trail hypothesis.

2.5.3 Linear attacks
Under the dominant trail hypothesis, Matsui’s work provides two techniques to attack a key-alternating block cipher
by exploiting a linear approximation that yields a non-zero correlation with it. These key-recovery attacks are both
located in the known-plaintext model and are called Algorithm 1 and Algorithm 2 [35]. Both methods are briefly
discussed.

Algorithm 1. The first algorithm exploits Equation 2.13 to recover information about the key using the sign of
the sample correlation. Let (Ek, Dk) be an r-round iterated block cipher on n-bit blocks with round function F
for which the adversary constructs a linear trail λ = (u, λ2, . . . , λr, v) with a large correlation contribution that is
dominant for the correlation of the approximation ⟨u, v⟩. Given a sufficiently large set T of plaintext-ciphertext
pairs encrypted with Ek under the same key k = (k1, . . . , kr+1), the adversary can compute an approximation of
the correlation CEk

v,u as

Ĉ = 1
|T |

∑
(x,y)∈T

(−1)u⊤x⊕v⊤y; (2.14)

the sample correlation. In addition, the adversary can pre-compute the value of CF
λ , since this value is not influenced

by the key. Because Ck
λ is assumed to be the dominant contribution to CEk

v,u, it then follows from Equation 2.13
that

(−1)λ⊤k = Ck
λ/CF

λ ≈ CEk

λ /CF
λ ≈ Ĉ/CF

λ , (2.15)
thus making it possible for the adversary to make an informed guess of the value of λ⊤k =: b. Given that the
function λ⊤x is balanced, only half of all keys k will yield λ⊤k = b, while λ⊤k = b ⊕ 1 will be observed for the
other half. As such, this technique enables the adversary to effectively cut the search space in half when the bit is
correctly guessed.

11

Algorithm 2. Whereas Matsui’s first attack focuses on observing the sign of the correlation, the second instead
leverages its magnitude to extract information about the key, in particular the round key of the last round. To
perform this attack on the r-round cipher, the adversary uses an (r-1)-round linear trail λ = (u, λ2, . . . , λr−1, v)
with large correlation contribution that is dominant for the approximation ⟨u, v⟩. Let T denote the set of plaintext-
ciphertext pairs available to the attacker. For each of the last-round keys k under consideration, the adversary
constructs the set Tk := {(p, D1

k(c)) | (p, c) ∈ T}, where D1
k(y) denotes the 1-round decryption of y under key

k. For each of these sets, the adversary then computes the sample correlations Ĉk of the linear approximation
⟨u, v⟩. Since one of the sets Tk corresponds with the actual last-round key k∗, this set now contains plaintexts
and their (r-1)-round encrypted ciphertexts. It is therefore expected that the sample correlation magnitude |Ĉk∗|
for Tk∗ is close to the trail’s true correlation magnitude |CF

λ |. For the sets corresponding with incorrect key
guesses it is meanwhile assumed that the sample correlation is close to zero; an assumption known as the wrong-key
randomization hypothesis [2, 10, 54]. As such, the adversary can construct an ordering of the round keys based on
the magnitude of their set’s sample correlation, where those with magnitude close to |CF

λ | are more likely to be the
correct key. This ordering can then be used to search for the master key in a manner that is expected to be faster
than an exhaustive key search.

2.5.4 Complexity
Not every linear approximation is suitable to successfully perform the Algorithm-1 and Algorithm-2 attacks: only
when the magnitude of the correlation is large enough can the attacks succeed. To understand why this is the case,
we must discuss the complexity of both attacks.

Before discussing this complexity, let us first recall the definition for the known-plaintext model in Section 2.4.1,
which states that “the known-plaintext model assumes the adversary has means to obtain arbitrary pairs of plaintext
and ciphertexts [...]”. In the remainder of this thesis, we assume that ‘arbitrary’ is to mean that each plaintext-
ciphertext pair observed by the adversary is sampled uniformly at random from all pairs. In particular, the pairs are
sampled with replacement. Given a large enough sample size, it is thus expected that the adversary will encounter
some pairs multiple times in its sample multi-set.

Algorithm 1. The time complexity of this attack is linear in the size of the data set: the adversary utilizes
each plaintext-ciphertext pair once in computing the approximation Ĉ for CEk

v,w, after which (−1)λ⊤k is determined
in constant time using Equation 2.13. Since each plaintext-ciphertext pair needs to be considered only once, this
attack can be set up as a streaming algorithm [1], utilizing a constant size memory space. The data complexity of
the attack is dependent on two factors: the correlation of the linear approximation used and the desired success
probability of the attack. In [35] a formula relating the data complexity and these two facets has been presented.
We recall this formula in Lemma 2.4.

Lemma 2.4 (Lemma 2, [35]). Let t be the number of given random plaintext-ciphertext pairs and |CF
λ | be the

absolute correlation contribution of the trail λ that dominates ⟨u, v⟩. Given that |CF
λ | is sufficiently small, the

success rate p∗ of Algorithm 1 is

p∗ =
∫ ∞

−2
√

t·|CF
λ

|

1√
2π

e−x2/2dx = Φ
(

|CF
λ | ·

√
t
)

, (2.16)

where Φ denotes the cumulative distribution function of the standard normal distribution.

Proof. The proof of this lemma is deferred to Appendix A.

This result thus illustrates that for any constant success probability p∗, the data complexity is inversely proportional
to the square of the correlation. This demonstrates why it is preferable for the adversary to construct a dominant
linear trail with a correlation contribution magnitude that is as large as possible: an attack based on the linear
approximation containing this trail requires the least amount of data — and thus time — to execute. We present
the relation between p∗ and t in Table 2.1, where the value of t is expressed in terms of CF

λ . As an example, the
table illustrates that when t = 4(CF

λ)−2, the algorithm is expected to succeed with probability 0.977. When we
instead express CF

λ in terms of t, it follows that CF
λ must be greater than t−1/2 for the algorithm to succeed with

probability 0.841 or greater. Since the data complexity is naturally upper bounded by the size of the full code book,
it follows that CF

λ must be greater than 2−n/2 to be used effectively in an Algorithm-1 attack.

12

Table 2.1: Relation between sample size, correlation and probability of success for Algorithm 1.

t (CF
λ)−2 2(CF

λ)−2 4(CF
λ)−2 8(CF

λ)−2

p∗ 0.841 0.921 0.977 0.997

Algorithm 2. We also determine the time, memory and data complexity of an Algorithm-2 attack. The time
complexity for this attack is m times the data complexity, with m the number of keys considered, since the sample
correlation must be determined for each of these keys. The memory complexity equals O(m), since all m sample
correlations must be stored to construct the ordering. The expression for the data complexity again depends on the
success probability and correlation contribution of the trail, as well as two additional factors. The first of these is
the advantage of an attack. We say that an Algorithm-2 attack obtains an (log2(m) − log2(r))-bit advantage over
exhaustive search when the ordering it creates ranks the correct key among the top r in the ordering [54]. We will
use a := log2(m) − log2(r) to denote the advantage of an attack.

The second aspect is the specific wrong-key randomization hypothesis used in the analysis. As previously mentioned,
the wrong-key hypothesis assumes that the magnitude of the sample correlation is distributed around zero for all
Tk where k is not the correct round key. Selçuk [54] first hypothesized that the correlation for a wrong key would be
exactly 0 and thus that the sample correlation would be a distributed according to N (0, 1/t), with N denoting the
normal distribution. A derivation for this is distribution is found in the proof for Lemma 2.4 located in Appendix A.
Under this version of the hypothesis, an expression was derived relating the success probability, correlation, data
complexity and advantage to each other. We recall this expression in Lemma 2.5.

Lemma 2.5 (Theorem 2, [54]). Let p∗ be the probability that a linear attack on m key candidates with a linear
approximation of correlation C and t known plaintext blocks, delivers an a-bit or higher advantage. Assuming that
the linear approximation’s correlation is independent for each key tried and is equal to 0 for all wrong keys, we have,
for sufficiently large t,

p∗ = Φ
(√

t · |C| − Φ−1(1 − 2−a−1)). (2.17)

The lemma can furthermore be rewritten to express the data complexity t as

t =
(

Φ−1(p∗) + Φ−1(1 − 2−a−1)
|C|

)2

. (2.18)

Bogdanov and Tischhauser [10] later introduced a variation to the hypothesis, arguing that the correlation associated
with a wrong key would be distributed as N (0, 2−n) for an n-bit block cipher. One would therefore expect the
sample correlation Ĉk to be distributed as N (0, 1/t + 1/2n) for incorrect key guesses k. Along with this hypothesis,
the authors derived a different relation for the four factors, which we recall in Lemma 2.6.

Lemma 2.6. Theorem 2, [10] Consider a linear attack with Matsui’s Algorithm 2 on an n-bit block cipher (n ≥ 5)
using a linear approximation with correlation C ̸= 0 and sufficiently large t ≤ 2n known plaintexts. Denote by p∗

the probability that this attack succeeds with an advantage of a > 0 bits over exhaustive key search. Then

p∗ ≈ Φ
(√

t · |C| −
√

1 + t/2n · Φ−1(1 − 2−a−1)), (2.19)

Observe that the only difference with Lemma 2.5 is the
√

1 + t/2n term. This term has as an effect that the success
probability of an attack is significantly reduced when its data complexity is very close to the size of the full code
book 2n. The authors have provided empirical evidence confirming their hypothesis to be a better fit than Selçuk’s
for the 80-bit ciphers SmallPresent [33] and RC6-5/8/10 [51]. However, for block ciphers with larger block sizes
their hypothesis could not be verified due to the time complexity of the verification step becoming too high.

These complexity derivations demonstrate that a linear approximation with large correlation magnitude enables
both Algorithm-1 and Algorithm-2 attacks on a cipher, thus illustrating that the existence of such approximations
is highly undesirable. It is for this reason that modern ciphers include non-linear functions in their functional
description to thwart these attacks. As alluded to in Section 2.3.3, the AES attempts to accomplish this using the
non-linear inv function contained in the SubBytes step.

13

2.5.5 Extensions
Linear Cryptanalysis has proven a powerful and indispensable tool in the analysis of block ciphers. Following its
inception, literature has produced many extensions attempting to improve upon the technique. A significant part of
these extensions focus on combining multiple linear approximations, with the goal of constructing an approximation
that achieves a correlation that is greater than can be achieved with the linear approximations individually. We
briefly discuss the extensions in this category that are most relevant to this work.

The first extension of interest is Multiple Linear Cryptanalysis, a technique first explored by Kaliski and Rob-
shaw [28] in 1994. This work demonstrated that several linear approximations involving the same key bits can be
combined to extract information on the key while involving significantly fewer data compared to the basic technique.
In 2004, Biryukov, De Cannière and Quisquater [8] observed that often times, only few such approximations exist,
severely limiting the usability of the attack. Attempting to resolve this issue, it is shown that linear approximations
involving different key bits can be combined to recover more information on the key, in an attack that has the
same or lower complexity than one involving a single linear approximation. Murphy [40] has later criticized an
assumption underlying both methods. He showed that linear approximations are not necessarily independent: a
statement assumed true by the previous authors.

Hermelin, Cho and Nyberg [26, 27] introduced Multidimensional Linear Cryptanalysis in an attempt to resolve this
issue. This work provides a novel technique expanding on its predecessor by adding the requirement that the linear
approximations that are combined need to form a linear subspace. In [47] it is recognized by Nyberg that this
requirement, although resolving the independence issue, often leads to the inclusion of many weak linear trails, thus
weakening the approximation. The Affine Linear Cryptanalysis [3, 47] extension aims to resolve this by allowing
all linear approximations in a half space to be discarded if these are considered invaluable to the attack.

Biham and Perle [6] have approached the use of multiple linear approximations from a different angle, introducing
the concept of Conditional Linear Cryptanalysis. Instead of combining multiple approximations into one, their
work demonstrates how the correlation of a linear approximation of the Feistel-cipher DES [42] can be improved
by conditioning the data set. In this conditioning, the data set is partitioned based on a set of (other) linear
approximations. By only considering the data in some of the parts, it is illustrated that the correlation of the linear
approximation is significantly improved.

14

Chapter 3

Analysis of the inversion function

This chapter analyses the vectorial Boolean function inv, which was introduced in Section 2.3 as an integral part
of the AES s-box. First, we recall in Section 3.1 the seminal work by Nyberg [45] which provides an upper bound
of 21−n/2 on the correlation magnitude of any linear approximation for the inverse X−1 in F2n . We then recall the
work of Keliher et al. [29, 30] which discusses the complete Linear Approximation Table (LAT) for the special case
that n = 8, and conclude that Nyberg’s upper bound is tight in this situation.

In symmetric-key folklore, these two results are understood to mean that any attempt to approximate this multi-
plicative inverse in F28 must incur a cost of 2−3 at the minimum. Conversely, this thesis presents in Section 3.2
two approximation techniques exhibiting a higher correlation when applied to inv. Finally, in Section 3.3 it is
demonstrated how the approximations can be adapted when the function under investigation is used in composition
with affine transformations. The discussion in this chapter is made from a mathematical point of view, and is pur-
posefully kept abstract. The implications for symmetric-key cryptanalysis and in particular the AES, are deferred
to Chapter 4.

3.1 Linear Approximations of the inversion function
Let X−1 : F2n → F2n denote the function that maps a finite field element to its multiplicative inverse. Nyberg
proved in [45] that this function possesses properties that are highly desirable in cryptography. In particular, it is
shown that the correlation of any linear approximation for this function is upper bounded by 21−n/2. This property,
among others, led Daemen and Rijmen to use this function with n = 8 as part of the Rijndael s-box [17]. Recall
that this particular instance of the inversion function was previously introduced in Section 2.3 as inv : F8

2 → F8
2.

We briefly discuss the linear properties of the inv function. To this end, we construct its correlation matrix Cinv.
This matrix is isomorphic to the Linear Approximation Table of inv, which was previously discussed in [29, 30], and
reveals a clear structure underlying the inv operator. In particular, it holds that for any output mask v ∈ F8

2 \ {0},
the distribution of values in column Cinv

v,· is fixed [29, Lemma 2]. We recall this distribution in Table 3.1. For an
arbitrary v ∈ F8

2 \ {0}, this table lists each value of Cinv
v,u along with the number of input masks ϕ for which this

correlation is attained. Since inv is an involution, we additionally conclude that the same distribution arises when
u is fixed and v varies instead.

Table 3.1: Frequency distribution of the correlation between linear combinations of bits in the inv input and output.

Cinv
v,u − 7

64 − 6
64 − 5

64 − 4
64 − 3

64 − 2
64 − 1

64 0 1
64

2
64

3
64

4
64

5
64

6
64

7
64

8
64

ϕ 8 16 8 18 24 16 32 17 16 20 16 16 16 20 8 5

Table 3.1 reveals that, regardless the choice of output mask v, there always exist exactly five input masks u ∈ F8
2\{0}

s.t. Cinv
v,u = 8

64 = 2−3, where it should be noted that the exact values of these masks depend on the choice of v. Let
us use Ωv = {ω1, ω2, ω3, ω4, ω5} to denote the set containing these five masks moving forward. In Appendix D, the
set Ωv is listed for each v ∈ F8

2 \ {0} in Table D.1.

15

Scanning the sets in this table we find that, irrespective of the chosen output mask v, Ωv always contains two masks
that can be expressed as a linear combination of the other three. To be more precise: for any v ∈ F8

2 \ {0}, there
exists an ordering on the elements in Ωv such that ω1 ⊕ ω2 = ω4 and ω1 ⊕ ω3 = ω5. Note that the sets in Table D.1
are listed such that each set adheres to this ordering. Since a ⊕ b = c ⇐⇒ a ⊕ c = b, it follows that there are in
fact eight such orderings. In the remaining analysis we will assume any one of these eight to be applied to Ωv; all
results hold irrespective of the chosen ordering.

3.2 Novel approximation methods
The combined results of Nyberg and Keliher et al. show that the absolute correlation of a linear approximation
with inv is upper bounded by 2−3 and that this bound is tight. Table 3.1 additionally indicates that this upper
bound is not just attained by a single linear approximation, but that five exist for every output mask v ∈ F8

2 \ {0}.
In an attempt to exploit this property, this section introduces two approximation techniques that combine multiple
linear approximations with a shared output mask. It is furthermore demonstrated that both methods allow for the
construction of approximations of the inv function that achieve a correlation magnitude greater than 2−3.

3.2.1 Weighted approximation
It is a well-known result in linear cryptanalysis literature that a Boolean function can be expressed as a weighted
combination of linear Boolean functions [12, 17]; an expression that is closely related to Parseval’s identity. We
recall this result in Lemma 3.1 and provide a novel proof.

Lemma 3.1 (Equation 12, [12]). Let n, m ∈ N+ and F : Fn
2 → Fm

2 any arbitrary vectorial Boolean function. For
any v ∈ Fm

2 and a ∈ Fn
2 it holds that

(−1)v⊤F (a) =
∑

u∈Fn
2

CF
v,u · (−1)u⊤a. (3.1)

Proof. Let v ∈ Fm
2 and a ∈ Fn

2 be arbitrary. It holds that

∑
u∈Fn

2

CF
v,u · (−1)u⊤a (1)=

∑
u∈Fn

2

 1
|Fn

2 |
∑

x∈Fn
2

(−1)u⊤x⊕v⊤F (x)

 · (−1)u⊤a

= 1
|Fn

2 |
∑

x∈Fn
2

(−1)v⊤F (x)
∑

u∈Fn
2

(−1)u⊤(x⊕a)

(2)= 1
|Fn

2 |
∑

x∈Fn
2

(−1)v⊤F (x) · |Fn
2 | · δ(x ⊕ a)

= (−1)v⊤F (a),

where (1) follows from Lemma 2.2 and (2) from Lemma 2.1.

This lemma shows that when v⊤F (x) is transformed to (−1)v⊤F (x), it can be decomposed into a weighted combina-
tion of the functions (−1)u⊤x, where the weight of each is determined as the correlation between u⊤x and v⊤F (x).
While it takes all parity functions with non-zero correlation to compute (−1)v⊤F (x) precisely, this equation suggests
that a subset can be used to construct an approximation for (−1)v⊤F (x), which can be transformed back to an
approximation for v⊤F (x). The weighted approximation method attempts to achieve exactly this. Let us introduce
this technique in an abstract form.

A weighted approximation ⟨U, W, v⟩ is a tuple consisting of a selection of input masks U = (u1, . . . , ur) ∈ (Fn
2)r,

their non-zero weights W = (w1, . . . , wr) ∈ Rr, and a mask v : Fm
2 , which can be used to approximate v⊤F (x)

with F : Fn
2 → Fm

2 a vectorial Boolean function. Let us use f : Fn
2 → F2 to denote v⊤F (x). We first construct

an approximation for the function (−1)f(x) and then transform this into an approximation for f(x). First, the
functions (−1)u⊤

i x with weights wi are combined in similar fashion to Equation 3.1, forming

QU,W (x) =
r∑

i=1
wi · (−1)u⊤

i x. (3.2)

16

Observe that the sign of this expression can act as an approximation for (−1)f(x). To transform this into an
approximation for f(x), we apply an indicator function to QU,W , forming

MU,W (x) :=
{

0 if QU,W (x) > 0
1 if QU,W (x) < 0

. (3.3)

Moving forward, we make use of the shorthand notation CF
v,U,W := C(MU,W (x), v⊤F (x)) to denote the correlation

between the weighted approximation MU,W and Boolean function v⊤F .

When using this technique to construct an approximation for f(x), one must thus decide which input masks to
include in U and how to weigh them. We treat these topics in reverse order.

Choice of weights. In Equation 3.1 the weights wi are chosen as the correlation between the parity functions
u⊤

i x and the function v⊤F (x), for all 1 ≤ i ≤ r. We provide a brief analysis underpinning the same choice of weight
for the weighted approximation.

Let f : Fn
2 → F2 be an arbitrary vectorial Boolean function and u ∈ Fn

2 an arbitrary input mask. Let us now view
(−1)u⊤x as a ‘predictor’ for (−1)f(x). We first of all observe that the correlation between these two functions equals

2 · P
[
(−1)u⊤

i x = (−1)f(x)
]

− 1 = 2 · P
[
u⊤

i x = f(x)
]

− 1 = C
(
u⊤x, f(x)

)
(3.4)

by construction. Let us define Cf
u := C(u⊤x, f(x)) and assume that f and u have been chosen such that this

correlation is non-zero. Observe that the sign of this correlation indicates whether the predictor is either correct
or incorrect for the majority of the input space. Multiplying (−1)u⊤x with sgn(Cf

u) therefore yields a predictor
for (−1)f(x) that is predominantly correct. It thus holds that the correlation of each rectified parity function with
(−1)f(x) is

C
(

sgn(Cf
u) · (−1)u⊤x, (−1)f(x)

)
= |Cf

u | > 0. (3.5)

Let us call sgn(Cf
u) · (−1)u⊤x a rectified predictor. When constructing a predictor for (−1)f(x) using a linear

combination of rectified predictors, it remains to establish the magnitude of their weights. Since the predictors
are linearly combined, it is natural to assign a weight to each predictor that is proportional to its success rate.
Since each rectified predictor is correct on at least half of the input space, we can choose the weight of (−1)u⊤x

as 1
2 |Cf

u | = |P
[
u⊤x = f(x)

]
− 1

2 |. Because the function MU,W is invariant under the multiplication of the weights
W with any positive scalar, we may scale the weights with a factor of 2 without impacting CF

v,U,W . As a result, a
weight of sgn(Cf

u) · |Cf
u | = Cf

u for each transformed parity function (−1)u⊤x is expected to yield an approximation
for f that outperforms the parity functions individually.

Choice of masks. Having established that the correlation acts as a proper weight for each parity function, we
now discuss choosing masks to include in this approximation. In this choice, a balance must be struck between the
number of masks in U and the correlation of the approximation with the target function: a weighted approximation
⟨U, W, v⟩ with U = {u} is equivalent to the linear approximation ⟨u, v⟩, while an approximation with U = Fn

2 can
compute f exactly, as illustrated by Equation 3.1. It is up to the designer to determine this balancing point based
on the setting in which the approximation is deployed. We discuss constructing a small U while maximizing the
correlation of the approximation.

As illustrated, the weighted approximation benefits from masks u with large correlation magnitude |Cf
u |, which

will therefore be considered as members of U . It is encouraged to avoid constructing U for which QU,W is close to
zero. The reason for this is illustrated by the fact that MU,W is not defined for x with QU,W (x) = 0. The situation
where QU,W (x) is close to 0 can be viewed as the predictors (−1)u⊤x ‘not reaching a consensus’ about the value
of (−1)f(x) . Especially when QU,W is close to zero for a large part of the input space is it expected that MU,W

will often be incorrect, thus forming a poorly performing approximation for f(x). Observe that this situation can
be avoided by constructing U from an odd number of masks that have identical absolute weight. This choice of
U thwarts an additional problem: when the difference in weight between masks in U is large, it is possible that
some masks do not even influence the sign of QU,W , leading to no change of the behaviour of MU,W and thus no
improvement in the approximation’s correlation. This effect is illustrated by the extreme case that the weight of

17

one mask u′ ∈ U is greater than the sum of the weights of the others. In this situation, it follows that

sgn(QU,W (x)) = sgn

(∑
u∈U

Cf
u · (−1)u⊤x

)
= sgn

(
Cf

u′ · (−1)u′⊤x
)

= sgn
(

Cf
u′

)
· (−1)u′⊤x (3.6)

for all x, which implies that either MU,W (x) ≡ u′⊤x or MU,W (x) ≡ u′⊤x ⊕ 1. In either case this has as a result
that |CF

v,U,W | = |CF
v,u′ |, implying that the weighted approximation method yields no improvement compared to the

linear approximation ⟨u′, v⟩.

We lastly discuss the inclusion of linearly dependent masks in U . Observe that when a, b ∈ U with non-zero
weights, the values of (−1)a⊤x and (−1)b⊤x must be gathered to compute QU,W . By multiplying these values as
(−1)a⊤x · (−1)b⊤x = (−1)(a⊕b)⊤x, it follows that a ⊕ b can be computed; the value of (a ⊕ b)⊤x does not have to be
gathered. If the magnitude of Cf

a⊕b does not significantly deviate from that of Cf
a and Cf

b , it is thus encouraged to
consider including a ⊕ b in U .

Application to inv. To illustrate the utility of the weighted approximation method, we use it to construct three
approximations for inv. Each approximation is created for the same arbitrary output mask v ∈ F8

2 \ {0}, yet uses
a slightly different set of input masks. We base the three input mask sets on Ωv, since the masks ωi in this set
achieve the same, high correlation of Cinv

v,ωi
= 2−3 with the output mask v for each 1 ≤ i ≤ 5. Let us moreover

recall that the set of input masks is best constructed with an odd number of members that is greater than 1: using
a single mask yields an approximation that is equivalent to a linear approximation. As such, we will consider sets
containing three, five and seven masks.

Recall that the masks ω4, ω5 ∈ Ωv can be expressed as linear combinations of ω1, ω2 and ω3. To observe the
value in considering these linearly dependent masks, we use both U1 := {ω1, ω2, ω3} and U2 = Ωv to construct a
weighted approximation. To further investigate the influence of the inclusion of linearly dependent masks in U , we
additionally consider the set U3 := span(Ωv) \ {0}, where span denotes the linear span of a set of vectors. This
set includes the remaining two non-zero linear combinations of the masks in U1. Let us name these two masks
ω6 := ω2 ⊕ ω3 and ω7 := ω1 ⊕ ω2 ⊕ ω3. The correlations of these two masks with v⊤inv are Cinv

v,ω6
= Cinv

v,ω7
= −2−4.

We thus construct the weighted approximations ⟨U1, W1, v⟩, ⟨U2, W2, v⟩, and ⟨U3, W3, v⟩, where the weight wi ∈ W
associated with each mask ui ∈ U is chosen as Cinv

v,ui
. The correlations of MU1,W1 , MU2,W2 and MU3,W3 with v⊤inv

can then be computed using Lemma 2.2. It holds that Cinv
v,U1,W1

= 28
128 ≈ 2−2.2, Cinv

v,U2,W2
= 2−2 and Cinv

v,U3,W3
= 2−2.

We firstly remark that the correlation of ⟨U1, W1, v⟩ with inv improves over the 2−3 upper bound shown by Nyberg
for linear approximations. The results moreover show that including ω4 and ω5 leads to a further improvement
of the correlation, demonstrating the benefit of introducing linearly dependent masks to the input mask set. It
is therefore surprising that the correlation magnitude of ⟨U3, W3, v⟩ does not improve compared to ⟨U2, W2, v⟩.
Further investigation here reveals that sgn(QU2,W2) ≡ sgn(QU3,W3), i.e. the weights of ω6 and ω7 are too small to
impact the sign.

With this example we have thus demonstrated that the weighted approximation technique can be utilized to
construct an approximation for inv that achieves a correlation of 2−2 — outperforming all individual linear ap-
proximations — by combining five linear approximations, of which three are linearly independent.

3.2.2 Conditional approximation
We continue with a second approximation technique that adapts Conditional Linear Cryptanalysis — a technique
introduced in [6] for the Feistel cipher DES [42] — to SPNs. Whereas the weighted approximation aggregates mul-
tiple linear approximations to create an approximation, the conditional approximation technique instead partitions
the plaintext space using a set of linear approximations in an attempt to increase the correlation of another linear
approximation on some of the parts. Let us introduce the approximation technique.

A conditional approximation ⟨u, v⟩|U for a function F : Fn
2 → Fm

2 comprises a linear approximation ⟨u, v⟩ with
u ∈ Fn

2 and v ∈ Fm
2 , and a set of conditioning input masks U = {u1, . . . , ur} ⊂ Fn

2 . In this approximation, the set U
is leveraged to create a partition RU on the plaintext space Fn

2 . This partition consists of plaintext classes, where
each class Rb

U with b ∈ Fr
2 contains those plaintexts x ∈ Fn

2 for which (u⊤
1 x, . . . , u⊤

r x) = b. For each plaintext class
we are interested in

pb = P
[
u⊤x = v⊤F (x)

∣∣ x ∈ Rb
U

]
; (3.7)

18

the probability that the input bit masked by u and output bit masked by v are the same for a uniformly chosen
plaintext in the class Rb

U . Note that the definition of correlation naturally extends to the definition of conditional
correlation as

CF
v,u

∣∣∣x∈Rb
U

:= 2 · P
[
u⊤x = v⊤F (x)

∣∣ x ∈ Rb
U

]
− 1; (3.8)

the correlation of the linear approximation ⟨u, v⟩ with F conditioned on x ∈ Rb
U . Observe that Lemma 2.2 can be

adapted to conditional approximations as well, from which it then follows that

CF
v,u

∣∣∣x∈Rb
U

= 1
|Rb

U |
∑

x∈Rb
U

(−1)u⊤x⊕v⊤F (x). (3.9)

Depending on the choice of masks in U , it may be possible to achieve a conditional correlation in one or more classes
that exceeds the correlation of the unconditioned linear approximation, i.e. for a non-uniform choice of inputs.

Relation to linear approximations. To provide an understanding for how a conditional approximation fits in
with standard linear cryptanalysis, we illustrate a relation between both approximation techniques. To this end,
we first introduce Lemma 3.2.

Lemma 3.2. Let F : Fn
2 → Fn

2 be an arbitrary Boolean permutation and v ∈ Fn
2 \ {0} arbitrary output mask. For

any input mask u ∈ Fn
2 \ {0} it holds that

CF
v,0

∣∣∣x∈R0
{u}

= −CF
v,0

∣∣∣x∈R1
{u}

= CF
v,u, (3.10)

where Rb
{u} := {x ∈ Fn

2 | u⊤x = b} for all b ∈ F2.

Proof. Note that |R0
{u}| = |R1

{u}| = |Fn
2 |/2 since u⊤x is a balanced function. It can thus be shown that

CF
v,0

∣∣∣x∈R0
{u}

+ CF
v,0

∣∣∣x∈R1
{u}

=

 1
|R0

{u}|
∑

x∈R0
{u}

(−1)0⊤x⊕v⊤F (x)

+

 1
|R1

{u}|
∑

x∈R1
{u}

(−1)0⊤x⊕v⊤F (x)

= 1

|R0
{u}|

∑
x∈Fn

2

(−1)v⊤F (x)

(1)= 1
|R0

{u}|
∑

x∈Fn
2

(−1)v⊤x

(2)= 0,

where step (1) holds because F is a permutation, while step (2) follows from Lemma 2.1. Subsequently,

2 · CF
v,0

∣∣∣x∈R0
{u}

= CF
v,0

∣∣∣x∈R0
{u}

− CF
v,0

∣∣∣x∈R1
{u}

=

 1
|R0

{u}|
∑

x∈R0
{u}

(−1)0⊤x⊕v⊤F (x)

−

 1
|R1

{u}|
∑

x∈R1
{u}

(−1)0⊤x⊕v⊤F (x)

(3)=

 1
|R0

{u}|
∑

x∈R0
{u}

(−1)u⊤x⊕v⊤F (x)

−

− 1
|R1

{u}|
∑

x∈R1
{u}

(−1)u⊤x⊕v⊤F (x)

= 2

|Fn
2 |
∑

x∈Fn
2

(−1)u⊤x⊕v⊤F (x)

= 2 · CF
v,u,

where step (3) multiplies the summations with (−1)u⊤x, which equals 1 for all x ∈ R0
{u} and −1 for x ∈ R1

{u}. The
lemma follows from these two equations.

19

It follows from the lemma that a conditional approximation ⟨0, v⟩|{u} restricted to the plaintext partition R0
{u} with

u, v ∈ Fn
2 \ {0} is equivalent to the linear approximation ⟨u, v⟩. Note moreover that the correlation magnitude of

this approximation restricted to R1
{u} is identical to |CF

v,u| as well.

We can illustrate further relations between a conditional approximation and linear approximation by observing a
relation between conditional approximations. Equation 3.9 can be used to show that the conditional correlation
magnitude remains constant under the addition of elements in U to input mask u. We present this in Lemma 3.3.

Lemma 3.3. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean function, u ∈ Fn
2 \ {0} and v ∈ Fm

2 \ {0} arbitrary
masks, and U ⊂ Fn

2 with |U | = r an arbitrary set of vectors. It then holds that

(−1)bi · CF
v,u⊕ui

∣∣∣x∈Rb
U

= CF
v,u

∣∣∣x∈Rb
U

for any conditional mask ui ∈ U and any class b = (b1, . . . , br) ∈ Fr
2.

Proof. Let 1 ≤ i ≤ r arbitrary and recall that for all x ∈ Rb
U , u⊤

i x = bi for all ui ∈ U . We can use this to show that

CF
v,u

∣∣∣x∈Rb
U

= 1
|Rb

U |
∑

x∈Rb
U

(−1)u⊤x⊕v⊤F (x)

= 1
|Rb

U |
∑

x∈Rb
U

(−1)u⊤x⊕v⊤F (x) · (−1)u⊤
i x · (−1)u⊤

i x

(1)= (−1)bi · 1
|Rb

U |
∑

x∈Rb
U

(−1)(u⊕ui)⊤x⊕v⊤F (x)

= (−1)bi · CF
v,u⊕ui

∣∣∣x∈Rb
U

.

Here, step (1) follows from the observation that u⊤
i x = bi for all x ∈ Rb

U and that a⊤x ⊕ b⊤x = (a ⊕ b)⊤x.

Applied to our previous example, this yields that the conditional approximations ⟨0, v⟩|{u} and ⟨u, v⟩|{u} achieve the
same correlation magnitude on each plaintext class, and thus ⟨u, v⟩|{u} restricted to R0

{u} is equivalent to ⟨u, v⟩ as
well. Note that Lemma 3.3 can alternatively be viewed as a technique to invert the sign of the conditional correlation
associated with half of the plaintext classes. This will prove useful in constructing a conditional approximation for
inv.

Constructing U . In [6], several techniques are presented to for creating conditional approximations with great
performance, including heuristic approaches involving known (non-conditional) linear approximations and an ex-
tension to a search algorithm presented by Matsui [36]. We add to this that one should only consider conditioning
masks for U that are linearly independent. When U contains an element that can be expressed as a linear combina-
tion of the others, the partition RU will contain empty plaintext classes. This can be illustrated with the example
U := {a, b, a ⊕ b}. Observe that (a⊤x, b⊤x, (a ⊕ b)⊤x) cannot equal (0, 0, 1), (0, 1, 0), (1, 0, 0) or (1, 1, 1) for any x
due to the linear dependence of the elements in U . This has as a result that the plaintext classes associated with
these vectors will be empty. When U only contains linearly independent vectors, the number of plaintext classes
is 2|U |. It moreover follows that all classes are of equal size 2n−|U |, since the functions u⊤

i x are balanced for all
ui ∈ U .

Application to inv. We construct a conditional approximation for the inversion function inv. Intuitively, the
highest conditional correlation is achieved when a linear approximation ⟨u, v⟩ is conditioned on input masks ui that
yield a high correlation with its output mask v. We have moreover seen that the conditioning set U should be
constructed using linearly independent input masks to avoid empty plaintext classes. To this end, we construct
the conditional approximation ⟨0, v⟩|U , with U = {ω1, ω2, ω3} ⊂ Ωv. Since |U | = 3, this gives rise to a plaintext
space partition RU comprising 2|U | = 8 plaintext classes, each containing 28−|U | = 25 = 32 plaintexts. With this
partition in place, we are interested in the correlations Cinv

v,0 |x∈Rb
U

for each b ∈ F3
2, which can be computed using

Equation 3.9. The values are displayed in Table 3.2.

From this table we can gather that the conditional approximation ⟨0, v⟩|U achieves a conditional correlation of
±2−1 for some plaintext classes. This is a substantial increase when compared to the 2−3 correlation upper bound

20

Table 3.2: Cinv
v,0

∣∣∣x∈Rb
U

for each b = (ω⊤
1 x, ω⊤

2 x, ω⊤
3 x) ∈ F3

2.

ω⊤
1 x 0 0 0 0 1 1 1 1

ω⊤
2 x 0 0 1 1 0 0 1 1

ω⊤
3 x 0 1 0 1 0 1 0 1

Cinv
v,0

∣∣∣x∈Rb
U

2−1 2−2 2−2 −2−1 −2−3 −2−3 −2−3 −2−3

for linear approximations applied to inv, illustrating the utility of the conditional approximation. Upon closer
inspection, we observe that there are exactly two plaintext classes with correlation magnitude 2−1: one with a
positive sign and one with a negative. It is therefore concluded that the partition induced by U is finer than
necessary; we may construct a coarser partition by combining parts in the existing partition such that there is only
one class with conditional correlation ±2−1. We illustrate how this can be achieved.

When merging two plaintext classes, it follows that the conditional correlation of the merged class is the average
of the original classes. When attempting to maintain a high correlation in the merged class, it is thus essential
that the correlation signs of the classes being merged are the same. Since this is not the case in our situation, it is
necessary to augment the correlation sign of one of the two classes yielding a correlation magnitude of 2−1. Observe
that this can be accomplished by multiplying the correlation of all classes for which ω⊤

3 x = 1 with −1. According
to Lemma 3.3, this can be achieved by considering the conditional approximation ⟨ω3, v⟩|U instead of ⟨0, v⟩|U . An
overview of the correlations associated with ⟨ω3, v⟩|U when applied to inv is shown in Table 3.3.

Table 3.3: Cinv
v,ω3

∣∣∣x∈Rb
U

for each b = (ω⊤
1 x, ω⊤

2 x, ω⊤
3 x) ∈ F3

2.

ω⊤
1 x 0 0 0 0 1 1 1 1

ω⊤
2 x 0 0 1 1 0 0 1 1

ω⊤
3 x 0 1 0 1 0 1 0 1

Cinv
v,ω3

∣∣∣x∈Rb
U

2−1 −2−2 2−2 2−1 −2−3 2−3 −2−3 2−3

With the signs of both classes now the same, it is possible to modify the set of conditioning masks such that these
two classes are merged and the conditional correlation is maintained. To merge the classes, one needs to discover
the linear properties that the classes have in common and modify the set U accordingly. In our case, observe that
the value of ω⊤

1 x is the same for the two classes of interest and that the value of ω⊤
2 x ⊕ ω⊤

3 x = (ω2 ⊕ ω3)⊤x = ω⊤
6 x

is moreover constant. This means that these two classes are merged when we instead partition on U ′ := {ω1, ω6} ⊂
span(Ωv). The conditional correlations associated with the approximation ⟨ω3, v⟩|U ′ are presented in Table 3.4.

Table 3.4: Cinv
v,ω3

∣∣∣x∈Rb
U′

for each b = (ω⊤
1 x, ω⊤

6 x) ∈ F2
2.

ω⊤
1 x 0 0 1 1

ω⊤
6 x 0 1 0 1

Cinv
v,ω3

∣∣∣x∈Rb
U′

2−1 0 0 0

Here, the linear approximation ⟨ω3, v⟩ achieves a correlation of 2−1 in exactly one plaintext class. Leveraging the
equivalence relation listed in Lemma 3.3, it furthermore follows that the conditional approximations ⟨ω2, v⟩|U ′ ,
⟨ω4, v⟩|U ′ , and ⟨ω5, v⟩|U ′ also yield conditional correlations of magnitude 2−1 for this plaintext class.

We have thus shown that for inv the conditional approximation technique can be used to partition the plaintext
space in four parts such that for one part we can observe a conditional correlation of 2−1 for the linear approximation
⟨ω3, v⟩, which is significantly higher than its unconditioned correlation.

21

3.3 Composition with affine transformations
We have thus demonstrated that weighted and conditional approximations for inv can be constructed that achieve
a higher correlation than any linear approximation. In cryptography, inv is rarely used in isolation, however. Recall
for example that the AES s-box does not just comprise the inv function, but is additionally composed of the linear
transformation L and the affine translation T. Moreover, each application of SubBytes is preceded by the addition
of a round key — an affine translation as well. To determine the utility of the new approximation techniques in
linear cryptanalysis, it should be investigated how both types of approximations for inv can be adapted to form
approximations for inv composed with an affine transformation such that the correlation magnitude is maintained.

To this end, we present a general discussion on extending an approximation for an arbitrary vectorial Boolean
function F : Fn

2 → Fm
2 to one for F composed with an affine transformation. For each of the four possible

compositions, we derive this extension in two steps: we first express the correlation of an approximation for the
composition in terms of the correlation of an approximation for F itself, after which this expression is used to derive
the rules for extending an approximation for F to one for the composition. Throughout, we use L to denote an
arbitrary linear vectorial Boolean function, while Xk denotes the affine translation by some arbitrary constant k.

3.3.1 Weighted Approximation
We commence with constructing a weighted approximation for the compositions Xk ◦ F , F ◦ Xk, L ◦ F and F ◦ L.
Let us start with the compositions Xk ◦ F . To this end, we introduce Lemma 3.4.

Lemma 3.4. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean function and Xk : Fm
2 → Fm

2 an affine translation
by k ∈ Fm

2 . Moreover, let U ⊆ Fn
2 be arbitrary, with r := |U |. For any v ∈ Fm

2 and W ∈ Rr it then holds that

(−1)v⊤k · CXk◦F
v,U,W = CF

v,U,W . (3.11)

Proof. Observe that

CXk◦F
v,U,W = 1

|Fn
2 |
∑

x∈Fn
2

(−1)MU,W (x)⊕v⊤(Xk◦F)(x)

= 1
|Fn

2 |
∑

x∈Fn
2

(−1)MU,W (x)⊕v⊤(k⊕F (x))

= 1
|Fn

2 |
∑

x∈Fn
2

(−1)MU,W (x)⊕v⊤F (x) · (−1)v⊤k

= (−1)v⊤k · 1
|Fn

2 |
∑

x∈Fn
2

(−1)MU,W (x)⊕v⊤F (x)

= (−1)v⊤k · CF
v,U,W .

It then follows that (−1)v⊤k · CXk◦F
v,U,W = CF

v,U,W .

Lemma 3.4 illustrates that all weighted approximations ⟨U, W, v⟩ yield a correlation of the same magnitude when
used to approximate both F and Xk ◦F ; only the sign could be inverted depending on the value of k. This illustrates
that it suffices to construct a well-performing weighted approximation for F as this can also be used to approximate
Xk ◦ F . Note that this argument remains valid when the value of k is unknown, as could be the case when it is
part of a round key. We transition to discussing the composition L ◦ F . To this end, let us introduce Lemma 3.5.

Lemma 3.5. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean functions and L : Fm
2 → Fm

2 an arbitrary linear
permutation. Moreover, let U ⊆ Fn

2 be arbitrary, with r := |U |. For any v ∈ Fm
2 and W ∈ Rr it then holds that

CL◦F
v′,U,W = CF

v,U,W , (3.12)

where v′ := M⊤
L−1v.

22

Proof. Let us first observe that the matrix ML−1 exists since L is a linear permutation. Observe furthermore that
ML−1 = M−1

L by construction. It now holds that

(M⊤
L−1v)⊤(L ◦ F)(x) = (M⊤

L−1v)⊤(MLF (x))
= (M⊤

L M⊤
L−1v)⊤F (x)

= v⊤F (x)

for all x ∈ Fn
2 , which implies that (M⊤

L−1v)⊤(L ◦ F) ≡ v⊤F . It is then concluded that

CL◦F
v′,U,W = C

(
MU,W , v′⊤(L ◦ F)

)
= C

(
MU,W , v⊤F

)
= CF

v,U,W

Lemma 3.5 shows that extending an approximations for F to one for L ◦ F involves modifying the output mask
for which the correlation is achieved. In particular, an approximation ⟨U, W, v⟩ for F is easily modified to an
approximation for L ◦ F by replacing the output mask v with M⊤

L−1v.

Readers well-known with the field of Linear Cryptanalysis will observe that the two previous extension rules are
equivalent to those for linear approximations. We will now discuss prepending F with both Xk and L and discover
that the rules that arise here will deviate from this norm. We first treat the composition F ◦ Xk in Lemma 3.6.

Lemma 3.6. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean function and let Xk : Fn
2 → Fn

2 : x 7→ x ⊕ k denote
the addition of an arbitrary k ∈ Fn

2 . Moreover, let U ⊆ Fn
2 be arbitrary, with r := |U |. For any v ∈ Fm

2 and W ∈ Rr

it holds that

CF ◦Xk

v,U,W ′ = CF
v,U,W (3.13)

where W ′ :=
(

w1 · (−1)u⊤
1 k, . . . , wr · (−1)u⊤

r k
)

, with W = (w1, . . . , wr).

Proof. Let w′
i := wi · (−1)u⊤

i k for all 1 ≤ i ≤ r. We first observe that

(QU,W ′ ◦ Xk)(x) = QU,W ′(x ⊕ k)

=
r∑

i=1
w′

i · (−1)u⊤
i (x⊕k)

=
r∑

i=1
w′

i · (−1)u⊤
i k · (−1)u⊤x

=
r∑

i=1
wi · (−1)u⊤

i k · (−1)u⊤
i k · (−1)u⊤x

=
r∑

i=1
wi · (−1)u⊤x

= QU,W (x)

for any x, k ∈ Fn
2 . It follows from this that QU,W ′ ◦ Xk ≡ QU,W and thus MU,W ′ ◦ Xk ≡ MU,W . As a result, it holds

that

CF ◦Xk

v,U,W ′ = C(MU,W ′ , v⊤(F ◦ Xk))
(1)= C(MU,W ′ ◦ Xk, v⊤(F ◦ Xk ◦ Xk))
(2)= C(MU,W , v⊤F)
= CF

v,U,W .

Here, step (1) follows from the fact that Xk is a permutation; prepending this to both functions leads to no change
in correlation; step (2) uses the fact that (Xk ◦ Xk)(x) = x ⊕ k ⊕ k = x.

23

This result illustrates that a weighted approximation ⟨U, W, v⟩ for F can be adapted for F ◦ Xk by updating the
weights of the predictors. Note that this adjustment can only be made when k is known. When this value is
unknown instead — for example because it is part of an unknown round key — it is unclear how the weights for the
input masks should be adapted for the approximation to maintain its correlation. This is left for future research.

We finally discuss adapting a weighted approximation for F to one for F ◦ L. In Lemma 3.7 it is shown that an
approximation ⟨U, W, v⟩ for F can be adapted for F ◦ L by appropriately modifying the set of input masks. Note
here that the weights of the original masks should still be used.

Lemma 3.7. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean function and let L : Fn
2 → Fn

2 be an arbitrary
linear permutation. Moreover, let U ⊆ Fn

2 be arbitrary, with r := |U |. For any v ∈ Fm
2 , and W ∈ Rr it holds that

CF ◦L
v,U ′,W = CF

v,U,W , (3.14)

where U ′ :=
{

M⊤
L ui

∣∣ ui ∈ U
}

.

Proof. The proof to this lemma is similar to that of Lemma 3.4, but hinges instead on the observation that
MU ′,W ◦ L−1 ≡ MU,W . The full proof can be found in Appendix A.

We can thus conclude that the weighted approximation can be expanded to include affine transformations that
are either prepended or appended to F , while maintaining the same correlation magnitude. Only when an affine
translation with an unknown translation vector is prepended to F , do we not yet know how the weights of the
approximation should be adapted to be certain that the correlation is maintained.

3.3.2 Conditional Approximation
We next investigate the possibility of extending a conditional approximation for F to one for F composed with
an affine transformation. We first discuss the general composition G ◦ F with G : Fm

2 → Fr
2 an arbitrary vectorial

Boolean function. Lemma 3.8 expresses the correlation of a conditional approximation on G ◦ F in terms of the
correlations of approximations for G and F .

Lemma 3.8. Let F : Fn
2 → Fm

2 and G : Fm
2 → Fr

2 be arbitrary vectorial Boolean functions. For any u ∈ Fn
2 , v ∈ Fr

2
and U ⊆ Fn

2 it holds that

CG◦F
v,u

∣∣∣x∈Rb
U

=
∑

z∈Fm
2

CG
v,z · CF

z,u

∣∣∣x∈Rb
U

(3.15)

Proof. Let us recall Equation 3.9, which states that

CF
v,u

∣∣∣x∈Rb
U

= 1
|Rb

U |
∑

x∈Rb
U

(−1)u⊤x⊕v⊤F (x).

It then holds that

∑
z∈Fm

2

CG
v,z · CF

z,u

∣∣∣x∈Rb
U

=
∑

z∈Fm
2

 1
|Fm

2 |
∑

x∈Fm
2

(−1)z⊤x⊕v⊤G(x)

 ·

 1
|Rb

U |
∑

y∈Rb
U

(−1)u⊤y⊕z⊤F (y)

= 1

|Fm
2 |

1
|Rb

U |
∑

x∈Fm
2

∑
y∈Rb

U

(−1)u⊤y⊕v⊤G(x)
∑

z∈Fm
2

(−1)z⊤(x⊕F (y))

(1)= 1
|Fm

2 |
1

|Rb
U |
∑

x∈Fm
2

∑
y∈Rb

U

(−1)u⊤y⊕v⊤G(x) · |Fm
2 | · δ(x ⊕ F (y))

= 1
|Rb

U |
∑

y∈Rb
U

(−1)u⊤y⊕v⊤G(F (y))

= CG◦F
v,u

∣∣∣x∈Rb
U

,

where step (1) follows from Lemma 2.1.

24

Before applying this lemma to Xk and L, let us first recall two lemmas. We have previously seen in Lemma 2.3
that CXk

v,u = δ(v ⊕ u), which is to say that the correlation of linear approximation ⟨u, v⟩ with the Xk function is
non-zero if and only if u = v. In [16] a similar equality is provided for linear vectorial Boolean functions. We recall
this property in Lemma 3.9.

Lemma 3.9 (Equation 7.36, [16]). Let L : Fn
2 → Fm

2 be a linear vectorial Boolean function. For any input mask
u ∈ Fn

2 and output mask v ∈ Fm
2 it holds that

CL
v,u = δ(M⊤

L v ⊕ u).

It follows from this lemma that only the linear approximations ⟨M⊤
L v, v⟩ yield a non-zero correlation with the linear

transformation L. Observe that these approximations can alternatively be expressed as ⟨u, M⊤
L−1u⟩ when n = m.

These lemmas can be combined with Lemma 3.8 to express the correlation of conditional approximations for
respectively Xk ◦ F and L ◦ F in terms of their correlation with F . For the composition Xk ◦ F this yields

(−1)v⊤k · CXk◦F
v,u

∣∣∣x∈Rb
U

= CF
v,u

∣∣∣x∈Rb
U

, (3.16)

for any k ∈ Fn
2 . This shows that a conditional approximation for F can also be used to approximate Xk ◦ F ; only

the sign of the correlation could change. Here, the argument again holds regardless of whether k is known or not.
When Lemma 3.8 is combined with Lemma 3.9, we find that

CL◦F
M⊤

L−1 v,u

∣∣∣x∈Rb
U

= CF
v,u

∣∣∣x∈Rb
U

. (3.17)

This result demonstrates that a conditional approximation ⟨u, v⟩|U for F can be adapted for L ◦ F by replacing the
output mask v with M⊤

L−1v.

We next consider the compositions F ◦Xk and F ◦L. Since the obtained relations are significantly different in either
situation, these cases are treated separately. Lemma 3.10 expresses the correlation of a conditional approximation
for F ◦ Xk in terms of the conditional correlation of F .

Lemma 3.10. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean function and let Xk : Fn
2 → Fn

2 : x 7→ x ⊕ k
denote the addition of an arbitrary k ∈ Fn

2 . For arbitrary masks u ∈ Fn
2 and v ∈ Fm

2 , and set of linearly independent
conditioning masks U ⊆ Fn

2 it holds that

(−1)u⊤k · CF ◦Xk
v,u

∣∣∣x∈Rb′
U

= CF
v,u

∣∣∣x∈Rb
U

, (3.18)

where b′ := (u⊤
1 k, . . . , u⊤

r k) ⊕ b, with r := |U |.

Proof. Observe that |Rb
U | = |Rb′

U | since the masks in U are assumed linearly independent. It holds that

(−1)u⊤k · CF ◦Xk
v,u |x∈Rb′

U
= (−1)u⊤k · 1

|Rb′
U |

∑
x∈Rb′

U

(−1)u⊤x⊕v⊤(F ◦Xk)(x))

= (−1)u⊤k · 1
|Rb′

U |
∑

x;(u⊤
1 x,...,u⊤

r x)=b′

(−1)u⊤x⊕v⊤F (x⊕k)

= (−1)u⊤k · 1
|Rb′

U |
∑

y⊕k;(u⊤
1 (y⊕k),...,u⊤

r (y⊕k))=b′

(−1)u⊤(y⊕k)⊕v⊤F (y)

= (−1)u⊤k · 1
|Rb

U |
∑

y⊕k;(u⊤
1 y,...,u⊤

r y)=b

(−1)u⊤y⊕v⊤F (y) · (−1)u⊤k

= 1
|Rb

U |
∑

y⊕k;(u⊤
1 y,...,u⊤

r y)=b

(−1)u⊤y⊕v⊤F (y)

(1)= 1
|Rb

U |
∑

y;(u⊤
1 y,...,u⊤

r y)=b

(−1)u⊤y⊕v⊤F (y)

= CF
v,u|x∈Rb

U

25

Observe that step (1) holds because Xk is an automorphism; it only permutes the order in which the elements are
considered in the summation.

We can deduce from Lemma 3.10 that prepending F with an affine translation has two effects on the conditional
correlation of the approximation ⟨u, v⟩|U . First, the sign of the conditional correlations may be inverted, depending
on the value of u⊤k. Since the correlation magnitude remains constant, this does not have to be accounted for in
extending ⟨u, v⟩|U to F ◦ Xk. The second effect is that the conditional correlations are permuted among the classes,
depending on the value of (u⊤

1 k, . . . , u⊤
r k). It is not possible to modify the approximation to account for this and

thus means that it is no longer clear which class corresponds with which conditional correlation when the value of
k is unknown.

In Table 3.5 we illustrate both effects with the conditional approximation ⟨ω3, v⟩|{ω1,ω6} applied to the function
inv ◦ Xk. The table illustrates that the value of (ω⊤

1 k, ω⊤
6 k) determines which class b = (ω⊤

1 x, ω⊤
6 x) yields the

conditional correlation with magnitude 2−1. Moreover, the sign of the correlation is determined by (−1)ω⊤
3 k.

Table 3.5: Cinv◦Xk
v,ω3

∣∣∣x∈Rb
U

for k ∈ F8
2, b ∈ F2

2 and U = {ω1, ω6} ⊂ span(Ωv).

ω⊤
1 x 0 0 1 1

ω⊤
6 x 0 1 0 1

ω⊤
3 k ω⊤

1 k ω⊤
6 k

0

0 0 2−1 0 0 0
0 1 0 2−1 0 0
1 0 0 0 2−1 0
1 1 0 0 0 2−1

1

0 0 −2−1 0 0 0
0 1 0 −2−1 0 0
1 0 0 0 −2−1 0
1 1 0 0 0 −2−1

With Lemma 3.11 we lastly discuss the composition F ◦ L. The lemma demonstrates that a conditional approx-
imation ⟨u, v⟩|U for F can be adapted to approximate F ◦ L by replacing u with M⊤

L u and the masks in U with
{M⊤

L ui | ui ∈ U}.

Lemma 3.11. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean function and let L : Fn
2 → Fn

2 be an arbitrary
linear permutation. For arbitrary u ∈ Fn

2 , v ∈ Fm
2 and U ⊆ Fn

2 it holds that

CF ◦L
v,u′ |x∈Rb

U′
= CF

v,u|x∈Rb
U

, (3.19)

where u′ := M⊤
L u, U ′ := {M⊤

L ui | ui ∈ U}.

Proof. The proof to this lemma is analogous to that of Lemma 3.10 and can be found in Appendix A.

We have thus illustrated that a conditional approximation for F can be extended to one for F composed with an
affine transformation without impacting the conditional correlation magnitudes. The only exception to this is the
composition F ◦Xk. We observed for this composition that an approximation for F can also be used to approximate
F ◦Xk, but that the conditional correlations are permuted among the plaintext classes, depending on the value of k.
When k is unknown, this yields that it is unknown which plaintext class yields the desired conditional correlation.

This finalizes the mathematical analysis of the weighted and conditional approximation and their application to the
inv function. In the following chapter we investigate the implications of these result for the AES. In particular, we
demonstrate how the conditional approximation can be used to launch a distinguishing attack against four-round
AES.

26

Chapter 4

Application to 4-round AES

The inv function is used bountifully in the AES encryption algorithm, given its presence in the SubBytes function.
As suggested in Section 2.3.3, one of the primary goals of this function in AES is to thwart linear attacks against
the cipher. It has in fact been argued by the designers that the correlation contribution of a linear trail for four
rounds of AES is upper bounded by 2−75 [17, Section 9.5.2], which in symmetric-key folklore is understood to mean
that this round-reduced cipher can withstand distinguishing attacks that rely on linear cryptanalysis. However,
this upper bound depends on the assumption that the correlation of the best approximation for the inv function
is upper bounded by 2−3. The fact that we have presented two novel approximation techniques that both exceed
this bound thus suggests that these four rounds might actually be vulnerable to such an attack. In this chapter
we confirm this suspicion by developing a statistical distinguishing attack against this round-reduced version of the
cipher.

Working towards this goal, we first review the Wide Trail Strategy in Section 4.1. This design strategy lies at
the core of the AES design and forms the basis for the aforementioned security argument. This is followed by
the construction of the four-round distinguisher in Section 4.2. We then use this distinguisher in Section 4.3 to
construct both a distinguishing attack, as well as a key-recovery attack against the cipher. The chapter closes with
an experimental validation of the constructed conditional approximation used in the distinguisher in Section 4.4.

4.1 The Wide Trail Strategy
The Wide Trail Strategy (WTS) was first introduced as a block cipher design philosophy by Daemen in 1995 [11].
Throughout the design of the SHARK [50], SQUARE [13], and BKSQ [14] ciphers, the concept was further developed
into a broadly-applicable block cipher design framework [15], ultimately forming the basis of the Rijndael cipher.
Following Rijndael’s standardization as AES in 2000, the WTS has seen more widespread use, for example in the
block ciphers Fides [7] and LED [23], and the hash-function Photon [22].

The strategy attempts to avert linear approximations with large correlations from forming in a cipher by forcing the
correlation contribution of all linear trails through the cipher to be small. To achieve this, the strategy advocates
the use of key-alternating SPNs with a specific format for the substitution function γ : Fn

2 → Fn
2 and permutation

function θ : Fn
2 → Fn

2 . Here, bricklayer function γ introduces non-linear behaviour into the cipher by treating the
n-bit block as the concatenation of m-bit bundles and applying a non-linear permutation to each bundle — these
permutations are referred to as the s-boxes of γ. Meanwhile, the permutation function θ is a linear transformation
aimed at spreading information between the bundles. This concept of information spreading is closely linked to
that of diffusion, which was first introduced by Shannon [55] to denote the quantitative spreading of information.

Observe that the encryption function of AES exhibits this exact structure. Operating on 128-bit blocks, the
encryption function makes use of bundles with size m = 8. The role of γ is fulfilled by the SubBytes function, which
applies the non-linear, invertible s-box S to each byte in the state. The function θ is composed of the functions
ShiftRows and MixColumns. In this composition, ShiftRows first moves bundles that are close to each other in
the context of MixColumns to positions that are distant. Following this, MixColumns is applied to groups of four
bundles, ‘mixing’ their contents.

27

Computing the correlation contribution of a proper linear trail for such a cipher is rather straightforward. Following
Equation 2.9, only the linear approximations for the round-functions influence the correlation magnitude, while
Lemma 3.9 demonstrates that a proper linear approximation for θ yields a correlation of amplitude 1. As such, only
the approximations over the function γ need to be considered. According to [17, Equation 7.37], the correlation of
an approximation for a bricklayer function is computed as

Cγ
v,u =

n/m−1∏
i=0

CSi

[v]i,[u]i
, (4.1)

where Si denotes the ith s-box in γ, and [v]i denotes the mask for the ith m-bit bundle. As such, the correlation
of a trail is computed as the product of the approximation correlations for each of the s-boxes.

When all s-boxes are the same — as is the case for AES — this expression allows for the creation of a simple upper
bound on the correlation of a trail. For any chosen permutation function θ it is possible to compute a lower bound
nr on the number of active s-boxes any r-round trail must contain. We consider an s-box active in a trail when it is
assigned a non-zero input mask, output mask, or both. When we furthermore observe that CS

v,u = 1 if and only if
u = v = 0, we can see that the absolute correlation contribution of an r-round linear trail is upper bounded by cnr ,
where c is an upper bound on the magnitude of the correlation of an approximation for the s-box. It was proven
by the designers of Rijndael that n4 = 25 for the permutation function θ = MC ◦ SR. We have moreover seen in
Chapter 3 that the maximum correlation magnitude attainable for a linear approximation of the s-box is c = 2−3.
As such, it is concluded that the correlation contribution of any linear trail for four-round AES is upper bounded
by (2−3)25 = 2−75.

This bound is understood to imply that no linear attack against four-round AES can succeed. There is, however,
a caveat in this argumentation. In particular, it is implicitly assumed that a single linear approximation yields the
strongest approximation technique for approximating an s-box and in particular the inv function; an assumption
we have previously shown to be incorrect. It is this incorrect assumption that we will exploit to attack four-round
AES.

4.2 Constructing the distinguisher
Before we can launch a distinguishing attack against four-round AES, we must design the distinguisher that sets
four-round AES apart from a random permutation. To this end, we will be constructing a conditional approximation
that has a large absolute correlation with the four-round AES function, yet is expected to yield a small correlation
for an arbitrary permutation. In particular, we will construct a four-round trail that we assume to be the dominant
contributor to the correlation of this approximation.

4.2.1 Strategy
We have seen in Section 4.1 that the correlation of a trail for 4-round AES is upper bounded by the product of the
correlations achieved when trailing each s-box. Given that any 4-round AES trail must encounter at least n4 = 25
s-boxes, we construct an approximation that encounters exactly 25 and achieves a high correlation for as many of
as possible.

Let us first observe that we can construct a conditional approximation for the s-box S that achieves a 2−1 correlation
on one of four plaintext classes. To see this, recall that we have previously shown such a conditional approximation
to exist for inv. When we furthermore recall Lemma 3.8 and the fact that the s-box S = T ◦ L ◦ inv with L and T
affine transformations, it follows that this approximation can be modified to approximate S with a 2−1 conditional
correlation on one plaintext class. Note here that this approximation can still be created for any output mask
v ∈ F8

2 \ {0}.

We can, however, not use this approximation technique to approximate the s-boxes in all four rounds. To see why,
let us recall the AES encryption function restricted to four rounds:

AES4
k = Ak5 ◦ RF ◦ Ak4 ◦ RF ◦ Ak3 ◦ RF ◦ Ak2 ◦ RF ◦ Ak1 ◦ RF ◦ Ak0 , (4.2)

where RF = MC ◦ SR ◦ SB. Observe here that the SubBytes function in the first round is only preceded by the
affine translation Ak0 and that the SubBytes function in the last round is only followed by affine transformation

28

Ak5 ◦MC◦SR. Meanwhile, the SubBytes functions in the middle rounds are both preceded and followed by other, non-
linear SubBytes functions. Since we have thus far only discovered means to extend the conditional approximation
over affine transformations, we are restricted to using this technique to approximate the s-boxes in the first and last
round. It was decided to further constrain ourselves to only approximate s-boxes in the first round using the novel
technique; we will approximate the s-boxes in the second, third and fourth round using a standard linear trail.

As we will observe during construction, it is possible to build these approximations such that the first round
encounters sixteen s-boxes, while nine are trailed in subsequent rounds. We commence with constructing three
one-round linear approximations for the last three rounds, where special attention is paid to the approximation
for the approximation of the third round. Hereafter, the conditional approximation for the first round function is
formed. Ultimately, the four approximations are combined and the four-round distinguisher is created.

4.2.2 Linear approximations for the round function
Constructing a linear approximation ⟨u, v⟩ for the round function RF can itself be decomposed in the construction
of a linear trail λ = (u, λ1, λ2, v), where the approximations ⟨u, λ1⟩, ⟨λ1, λ2⟩ and ⟨λ2, v⟩ approximate the functions
SubBytes, ShiftRows and MixColumns, respectively. There is exactly only one trail with a non-zero correlation
contribution for this approximation. Since ShiftRows and MixColumns are both linear, it follows from Lemma 3.9
that the correlation of their approximation is zero unless λ1 = M⊤

SRλ2 and λ2 = M⊤
MCv, respectively. As such, the

linear trail λ′ := (u, M⊤
SRM

⊤
MCv, M⊤

MCv, v) is the only — and thus dominant — contributor of the linear approximation
⟨u, v⟩. This approximation therefore yields a correlation of

CRF
v,u = CRF

λ′ = CSB
M⊤

SR M⊤
MC v,u. (4.3)

Note that this implies that an approximation for the SubBytes function induces an approximation for the full round
function, allowing us to focus on constructing the former.

With this in mind, we will now construct a linear trail λ = (λ1, λ2, λ3, λ4) for the second, third and fourth round.
Since the conditional approximation of the first round will encounter sixteen s-boxes, this trail should encounter the
remaining nine. Adhering to this, we will construct our three-round trail such that there are four active s-boxes in
the first and last round, and a single s-box in the middle. Since it should only contain one active s-box, we start with
constructing the linear approximation ⟨λ2, λ3⟩ for the middle round. In particular, we focus on the construction of
the approximation ⟨λ2, λ′′

3⟩ for the SubBytes function, as the approximations ⟨λ′′
3 , λ′

3⟩ for ShiftRows and ⟨λ′
3, λ3⟩

for MixColumns will follow automatically. Because this round should only contain one active s-box, the input mask
λ2 should be chosen such that it contains only one non-zero byte. Let us choose λ2 = (01x, 00x, . . . , 00x) ∈ F16

28 .
We must now choose the output mask λ′′

3 such that the correlation magnitude |CSB
λ′′

3 ,λ2
| of this approximation is

maximized. Since SubBytes is a bricklayer function, this correlation can be computed as

CSB
λ′′

3 ,λ2
=

15∏
i=0

CS
[λ′′

3]i,[λ2]i
= CS

[λ′′
3]0,01x ·

15∏
i=1

CS
[λ′′

3]i,00x . (4.4)

Observe that the magnitude of this correlation is maximized when the absolute correlation of the approximations
over each s-box is maximized. Since CS

v,0 = δ(v), it follows that we should choose [λ′′
3]i = 0 for 1 ≤ i ≤ 15.

Leveraging lemmas 2.3 and 3.9, we moreover find that

CS
v,u = CT◦L◦inv

v,u = (−1)v⊤63x · CL◦inv
v,u = (−1)v⊤63x · Cinv

M⊤
L v,u. (4.5)

As such, |CS
v,01x | is maximized at 2−3 when 01x ∈ ΩM⊤

L v, or equivalently M⊤
L v ∈ Ω01x due to the symmetry of inv.

As remarked in Section 3.1, there are exactly five masks v ∈ F8
2 \ {0} for which this holds, namely 48x, 50x, 88x,

90x and C0x. We opt to use 88x, thus making λ′′
3 = (88x, 00x, . . . , 00x). With this mask in place, the values of

the masks λ′
3 and λ3 are fixed, because the correlation of the approximations ⟨λ′′

3 , λ′
3⟩ and ⟨λ′

3, λ3⟩ is only non-zero
when λ′

3 = (M−1
SR)⊤λ′′

3 and λ3 = (M−1
MC)⊤λ′

3. We provide a schematic representation of the resulting linear trail in
Figure 4.1. To improve readability, the zero-bytes of the four masks have been left blank in the figure.

With the masks λ2 and λ3 fixed, now the masks λ1 and λ4 have to be chosen. Given that the approximations
⟨λ1, λ2⟩ and ⟨λ3, λ4⟩ both encounter four s-boxes, these masks should be chosen such that the correlation for either
approximation is (2−3)4 = 2−12. We present our chosen trails in figures 4.2 and 4.3. Concatenating the three
one-round approximations yields the three-round linear trail presented in Figure 4.4. Note that the four masks
presented in this table also act as the masks for each of the four round keys k1, k2, k3 and k4 used in AES4

k.

29

01x

SB7→

88x

SR7→

88x

MC7→

17x

FDx

5Bx

39x

Figure 4.1: One-round trail (λ2, λ′′
3 , λ′

3, λ3) for the third round.

39x

34x

2Dx

2Dx

SB7→

80x

81x

01x

01x

SR7→

80x

81x

01x

01x

MC7→

01x

Figure 4.2: One-round trail (λ1, λ′′
2 , λ′

2, λ2) for the second round.

17x

FDx

5Bx

39x

SB7→

25x

36x

D2x

80x

SR7→

25x

36x

D2x

80x

MC7→

FFx D0x 7Cx 30x

93x B0x 48x 10x

48x 90x C7x 2Bx

01x 70x 21x 3Dx

Figure 4.3: One-round trail (λ3, λ′′
4 , λ′

4, λ4) for the fourth round.

39x

34x

2Dx

2Dx

RF7→

01x

RF7→

17x

FDx

5Bx

39x

RF7→

FFx D0x 7Cx 30x

93x B0x 48x 10x

48x 90x C7x 2Bx

01x 70x 21x 3Bx

Figure 4.4: Constructed three-round trail (λ1, λ2, λ3, λ4).

4.2.3 A 1-round conditional linear trail
With the three-round linear trail in place, we now construct the 1-round conditional trail ⟨λ0, λ1⟩|U for the first
round. To derive the construction rules for a conditional approximation of an bricklayer function such as SubBytes,
we introduce Lemma 4.1. In this lemma u|v : Fn

2 ×Fm
2 → Fn+m

2 is used to denote the vector concatenation operator,
whilst 0r denotes the zero-vector of length r.

Lemma 4.1. Let F1 : Fn
2 → Fn

2 and F2 : Fm
2 → Fm

2 be arbitrary vectorial Boolean functions. For arbitrary masks
u1, v1 ∈ Fn

2 and u2, v2 ∈ Fm
2 , sets U1 ⊂ Fn

2 and U2 ⊂ Fm
2 with linearly independent vectors, and class indicators

b1 ∈ F|U1|
2 and b2 ∈ F|U2|

2 it holds that

CF1
v1,w1

∣∣∣∣x∈Rb1
U1

· CF2
v2,w2

∣∣∣∣x∈Rb2
U2

= CF
v,w

∣∣∣x∈Rb
U

(4.6)

where F : Fn+m
2 → Fn+m

2 : x|y 7→ F1(x)|F2(y) is the bricklayer-style application of F1 and F2, v := v1|v2,

30

w := w1|w2, b := b1|b2 and U := {ui|0m | ui ∈ U1} ∪ {0n|uj | uj ∈ U2}.

Proof. Let r1 := |U1|, r2 := |U2| and r := |U | = r1 + r2. Observe in the first place that

|Rb1
U1

| · |Rb2
U2

| = 2n−r1 · 2m−r2 = 2n+m−r1−r2 = 2n+m−r = |Rb
U |.

It moreover holds that for an arbitrary y ∈ Fn
2 and z ∈ Fm

2 , the following expressions are equivalent:

y|z ∈ Rb
U ≡ ((u1|0m)⊤(y|z), . . . , (0n|ur)⊤(y|z)) = (b1|b2)

≡ (u⊤
1 y, . . . , u⊤

r1
y, u⊤

r1+1z, . . . , u⊤
r z) = (b1, . . . , br)

≡ y ∈ Rb1
U1

and z ∈ Rb2
U2

.

As a result, it holds that

CF
v,w|x∈Rb

U
= 1

|Rb
U |

∑
x∈Rb

U

(−1)w⊤x⊕v⊤F (x)

= 1
|Rb1

U1
|

· 1
|Rb2

U2
|

∑
y|z∈Rb

U

(−1)(w1|w2)⊤(y|z)⊕(v1|v2)⊤(F1(y)|F2(z))

= 1
|Rb1

U1
|

· 1
|Rb2

U2
|

∑
y∈Rb1

U1

∑
z∈Rb2

U2

(−1)w⊤
1 y⊕w⊤

2 z⊕v⊤
1 F1(y)⊕v⊤

2 F2(z)

= 1
|Rb1

U1
|

∑
y∈Rb1

U1

(−1)w⊤
1 y⊕v⊤

1 F1(y) · 1
|Rb2

U2
|

∑
z∈Rb2

U2

(−1)w⊤
2 z⊕v⊤

2 F2(z)

= CF1

y∈Rb1
U1

· CF2

y∈Rb2
U2

where y ∈ Fn
2 , z ∈ Fm

2 .

This lemma thus states that the conditional correlation of an approximation for a bricklayer function is the product
of the conditional correlations with the individual s-boxes, restricted to a specific plaintext class. When we apply
this to the SubBytes function, we find that it suffices to construct sixteen conditional approximations ⟨ui, vi⟩Ui

for
S, and that the correlation of the their combination is computed as

CSB
v,w

∣∣∣x∈Rb
U

=
15∏

i=0
CS

vi,ui

∣∣∣∣x∈Rbi
Ui

, (4.7)

where v = v0| . . . |v15, u = u0| . . . |u15, b = b0| . . . |b15 and U =
⋃15

i=0{08i|u|0120−8i | u ∈ Ui}.

It thus follows that the construction of the linear approximation ⟨λ0, λ1⟩ used in this conditional approximation is
almost identical to that of the previous three. We do, however, have to pay closer attention to the construction
of the input masks to the s-boxes. In addition to adhering to the relation shown in Equation 4.5, we have to
make sure that the input mask ui of each s-box is chosen such that it does not equal ω1 ∈ ΩM⊤

L vi
, with vi the

output mask of the s-box. Recall here we have seen at the end of Section 3.2.2 that for any v ∈ F8
2 \ {0}, the

conditional approximation ⟨ω, v⟩|U only yields a 2−1 correlation with inv on R(0,0)
U with U = {ω1, ω6} ⊂ span(Ωv)

when ω ∈ Ωv \ {ω1}. In Table 4.5 the chosen trail for the approximation ⟨λ0, λ1⟩ is presented.

It remains to construct the conditioning set U . The conditioning set Ui for the approximation ⟨[λ0]i, [λ′′
1]i⟩|Ui of

the ith s-box in SubBytes is computed as {ω1, ω6} ⊂ span(Ωv), with v = M⊤
L [λ′′

1]i. We have moreover seen in
Equation 4.7 that these s-box conditioning sets can be combined as

⋃15
i=0{08i|u|0120−8i | u ∈ Ui} to form the

conditioning set U for the SubBytes function. The resulting set is presented in Equation 4.8. Here, the ω1-masks
form the left column, while the ω6-masks are presented on the right. To enhance the readability of this set, all
zero-bytes are represented using ··.

31

93x 80x A9x AAx

A9x 9Cx 58x A9x

3Cx A9x C1x D9x

80x AAx 3Cx C1x

SB7→

9Cx 34x 2Dx 3Bx

2Dx A5x 9Ax 2Dx

16x 2Dx 39x AEx

34x 3Bx 16x 39x

SR7→

9Cx 34x 2Dx 3Bx

A5x 9Ax 2Dx 2Dx

39x AEx 16x 2Dx

39x 34x 3Bx 16x

MC7→

39x

34x

2Dx

2Dx

Figure 4.5: One-round trail (λ0, λ′′
1 , λ′

1, λ1) for first round.

U = {E5 ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x, 3A ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x
·· 93 ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x, ·· 20 ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x
·· ·· 62 ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x, ·· ·· 19 ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x
·· ·· ·· 7D ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x, ·· ·· ·· EA ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x
·· ·· ·· ·· 7D ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x, ·· ·· ·· ·· EA ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x
·· ·· ·· ·· ·· C0 ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x, ·· ·· ·· ·· ·· 6B ·· ·· ·· ·· ·· ·· ·· ·· ·· ··x
·· ·· ·· ·· ·· ·· 93 ·· ·· ·· ·· ·· ·· ·· ·· ··x, ·· ·· ·· ·· ·· ·· 20 ·· ·· ·· ·· ·· ·· ·· ·· ··x
·· ·· ·· ·· ·· ·· ·· 79 ·· ·· ·· ·· ·· ·· ·· ··x, ·· ·· ·· ·· ·· ·· ·· CE ·· ·· ·· ·· ·· ·· ·· ··x
·· ·· ·· ·· ·· ·· ·· ·· 93 ·· ·· ·· ·· ·· ·· ··x, ·· ·· ·· ·· ·· ·· ·· ·· 20 ·· ·· ·· ·· ·· ·· ··x
·· ·· ·· ·· ·· ·· ·· ·· ·· 94 ·· ·· ·· ·· ·· ··x, ·· ·· ·· ·· ·· ·· ·· ·· ·· 49 ·· ·· ·· ·· ·· ··x
·· ·· ·· ·· ·· ·· ·· ·· ·· ·· 7A ·· ·· ·· ·· ··x, ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· F9 ·· ·· ·· ·· ··x
·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· 62 ·· ·· ·· ··x, ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· 19 ·· ·· ·· ··x
·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· 79 ·· ·· ··x, ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· CE ·· ·· ··x
·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· 93 ·· ··x, ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· 20 ·· ··x
·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· 9D ··x, ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· F2 ··x
·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· 7Ax, ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· F9x}

(4.8)

When the four one-round approximations are concatenated, the trail (λ0, λ1, λ2, λ3, λ4) is formed. By construction,
this trail has a large correlation contribution of (2−3)25 = 2−75 to the approximation ⟨λ0, λ4⟩, which we present
in Figure 4.6. Combined with the conditioning set U , the conditional approximation ⟨λ0, λ4⟩|U is formed, which
is expected to yield a correlation magnitude of (2−1)16 · (2−3)9 = 2−43 on exactly one of the 232 plaintext classes
induced by U .

93x 80x A9x AAx

A9x 9Cx 58x A9x

3Cx A9x C1x D9x

80x AAx 3Cx C1x

7→

FFx D0x 7Cx 30x

93x B0x 48x 10x

48x 90x C7x 2Bx

01x 70x 21x 3Bx

Figure 4.6: Four-round approximation ⟨λ0, λ4⟩.

4.3 Attacking four-round AES
With the four-round approximation in place, we can now exploit it to perform both a distinguishing as well as a
key-recovery attack on the four-round AES cipher.

32

4.3.1 Distinguishing attack
For the distinguishing attack, the adversary retrieves all possible plaintext-ciphertext pairs from the challenger. The
adversary partitions these pairs based on the plaintext using the conditioning set U , forming 232 classes containing
296 pairs each. The adversary now computes the correlation of each class with the approximation ⟨λ0, λ4⟩ and
concludes that the challenger encrypted the pairs using four-round AES if and only if exactly one class yields a
correlation with a magnitude of 2−43.

To see why this is a distinguishing property, we illustrate that one is very unlikely to observe a 2−43 correlation
when the challenger uses an arbitrary permutation. Let us view the permutation E used by the challenger as a
set of 232 ‘sub-functions’ Eb, where we define each sub-function as Eb : Rb

U 7→ Ib
U , with Ib

U := {Eb
k(x) | x ∈ Rb

U }.
The assumption that E is chosen uniformly random is now equivalent to assuming that all of these Eb are chosen
uniformly random. Observe that we can view these sub-functions Eb as equivalent to 96-bit permutations, since
|Rb

U | = |Ib
U | = 296.

Let us now recall the work by Bogdanov and Tischhauser [10], where it is argued that the correlation of a linear
approximation with an arbitrary n-bit permutation can be modelled using the normal distribution N (0, 2−n).
Applied to our specific case, we would thus expect the correlation of ⟨λ0, λ1⟩ with each sub-permutation to be
distributed according to N := N (0, 2−96). We can compute the probability that an arbitrary 96-bit permutation
yields a correlation magnitude of 2−43 with the constructed trail as

P
[
|X| > 2−43] = 2 · P

[
X > 2−43] = 2 · P

[
2−48 · X > 25] = 2 · Φ(−25) < 2−743.987, (4.9)

where X ∼ N . Given that an arbitrary permutation is composed of 232 arbitrary sub-permutations, the probability
that at least one of the sub-permutations achieves the desired correlation can be approximated as 2−743 ·232 = 2−711.
This probability is so incredibly small that we conclude it to be a distinguishing property for 4-round AES.

4.3.2 Key-recovery attack
In addition to the distinguishing attack, this conditional approximation also provides us means to launch a key-
recovery attack against the cipher. In particular, by determining the plaintext class with the non-zero correlation,
we can recover 32 bits of information about the key. Recall that we have seen in Table 3.5 that the absolute
correlation of ⟨ω2, v⟩|{ω1,ω6} with inv ◦ Xk is 2−1 on Rb

U when b = (ω⊤
1 k, ω⊤

6 k). Thus, by uncovering the plaintext
class Rb

U for which our approximation ⟨λ0, λ4⟩|U yields a correlation magnitude of 2−43, we can recover the value
of u⊤k for all u ∈ U . Note that this is equivalent to recovering 32-bits of information about the key since |U | = 32.

Complexity. Let us discuss the number of plaintext-ciphertext samples necessary to perform this attack. Because
in this setting it is known that the challenger uses the 4-round AES to encrypt the pairs, it suffices to determine
which class yields the 2−43 correlation, rather than determining whether such a class is present. This allows for a
reduction in the data complexity compared to the distinguishing attack.

In this attack, we request data from the challenger and use this data to determine the sample correlation for each
plaintext class. Given a sufficiently large number of samples per class, it is expected that the unique class with
the non-zero correlation yields the sample correlation with the greatest magnitude. We can thus use these sample
magnitudes to order the plaintext classes, and expect the correct class to be near the head of the ordering.

Despite not being an Algorithm-2 attack exactly, we can still use Lemma 2.5 to compute the data complexity of this
attack: we are still attempting to distinguish one non-zero correlation class from a large number of zero-correlation
classes. The only difference is that we are now working with plaintext classes instead of key classes. We do, however,
have to account for the fact that the lemma will only yield a data complexity t′ for a single class, instead of the
combined data complexity of all classes. In Table 4.1 we present the data complexity per class for fixed success
probability 0.95 and varying advantage a. Based on this table, we can conclude that with 292 plaintext-ciphertext
pairs per class, we should be able to discern the non-zero correlation plaintext class in at least 95% of experiments.

Table 4.1: Data complexity per plaintext class in terms of advantage.

a 1 8 16 32
log2(t′) 88.43 90.36 91.16 91.99

33

The second step is then to determine the total data complexity t. Here, one has to account for the fact that
t′ samples must be encountered for each class, while we assume that in the known-plaintext model samples are
gathered uniformly at random from the full plaintext-ciphertext space. As such, after working through 232 · t′

arbitrary plaintext-ciphertext pairs, it is very unlikely that exactly t′ were seen for each class: it is expected that
some classes will still be short some samples. The problem of determining the necessary sample size t is equivalent
to a problem known in literature as the dixie-cup problem. Here, one attempts to obtain m copies of n unique
objects by uniformly sampling these objects with replacement. It was shown by Newman [44] that the expected
number of objects Em(n) one must sample before obtaining m instances of each of the n types equals

Em(n) = n ln n + (m − 1) · n ln ln n + O(1) (4.10)

as n approaches infinity. In our situation, we attempt to encounter m = t′ samples for n = 232 plaintext classes
and are thus interested in total number of expected samples t = Em(n). We present the total data complexity t in
terms of the advantage a in Table 4.7.

Figure 4.7: Expected data complexity in terms of advantage.

a 1 8 16 32

log2(t) 122.06 123.99 124.79 125.62

We conclude from this table that 2125.62 data samples will allow us to extract the non-zero correlation class with
95% certainty. Since each sample is only used in computing the sample correlation of one class, the time complexity
of this attack is equal to the data complexity. The memory complexity of this attack is O(232), since each of the
232 sample correlations must be stored simultaneously. Note that this attack is of interest: the data complexity is
smaller than the size of the full code book, while the time necessary to determine the non-zero class — and thus 32
bits of the key — is shorter than an exhaustive key search.

4.4 Experimental validation
To close, we experimentally validate the conditional approximation we created. Given that the data complexity of
both the distinguishing attack as well as the key recovery attack are beyond what we can compute in reasonable
time, we only validate a part of the distinguisher. Because linear approximations have been extensively researched,
it was decided to focus the experimental validation on the conditional linear approximation ⟨λ0, λ1⟩|U created for
the first round. For this approximation, we expect that exactly one of the 232 plaintext classes will yield a 2−16

correlation with AES1
k, while the others all achieve a correlation of 0. To validate this hypothesis, we have devised

the following experiment:

Experiment. To start, a master key k is randomly generated. Based on this key, it is determined which plaintext
class is expected to yield the non-zero correlation with the AES1

k cipher. For this and fifteen arbitrary other classes,
a sample correlation with the approximation ⟨λ0, λ1⟩ is computed using t′ = 235.61 uniformly random sampled
plaintext-ciphertext pairs per class. The same samples are furthermore used to determine the sample correlation of
the approximation ⟨0, λ1⟩ for each class.

Hypotheses. Under the assumption that exactly one plaintext class yields a 2−16 correlation with ⟨λ0, λ1⟩, while
the other classes all yield a correlation of 0 with this approximation, we expect to observe three things:

First, the plaintext class with the 2−16 correlation yields the sample correlation with the largest magnitude. Observe
here that it follows from Lemma 2.5 that with t′ = 235.61 randomly sampled plaintext-ciphertext pairs per class, a
4-bit advantage is achieved with 0.95 probability when the correlation over the first round is in fact 2−16 for the
correct class. Given that we consider 16 = 24 classes, a 4-bit advantage is only achieved when the class with the
non-zero correlation yields the largest magnitude.

Second, the sample correlation for the other fifteen classes is distributed according to N (0, 2−35.61). Recall here
that the sample correlation Ĉ of an approximation with correlation C based on t uniformly random samples is
distributed as N (C, 1−C2

t).

34

Third, the sample correlation of all classes with the approximation ⟨0, λ1⟩ is also distributed with N (0, 2−35.61).
Since the correlation of this approximation is certainly zero regardless of the class, a result that deviates from this
expectation would indicate a bias in the generated samples.

4.4.1 Results
The experiment was performed four times, each with a different master key. In Table 4.2, the randomly generated
key, as well as the plaintext class U⊤k = (u⊤

1 k, . . . , u⊤
32k) expected to yield a 2−16 correlation magnitude are

presented for each experiment.

Table 4.2: Experiment settings

experiment k U⊤k

1 C5E267521462BA1186D4BF25CADE8FFBx 2C3C3B11x
2 CB819B4BED6948C2EA1785CBC6BA052Bx 4F53A073x
3 2694CADD22CBDCAD40ED5E0FBBA46C74x 0B4329B3x
4 00691AE8AA5C63239D980B645012A2DEx 351A608Cx

The sample correlations for the sixteen classes are presented in Table 4.3, where the classes are ordered based on
the magnitude of the sample correlation. The code used to compute these sample correlations can be found in
Appendix E. Cross-referencing with Table 4.2, we conclude that the greatest correlation magnitude is always ob-
tained by the class which we expect to yield the 2−16 correlation, confirming the first hypothesis. When aggregating
the four experiments, these suggest that the normal distribution N (0, 2−35.61) is not a perfect fit for the sampled
correlations of the sixty zero-correlation classes. In particular, we find that 76.7% of sample correlations lie within
one standard deviation of zero, 96.7% within two, and two extreme samples lie 3.06 and 3.14 standard deviations
away from the mean. Although the sample size is small, these results suggest that the actual distribution has a
smaller variation than hypothesized. We do currently have no hypothesis explaining why this distribution could be
narrower than expected. Lastly, we note that N (0, 2−35.61) is a good fit for the sample correlations of all classes
with ⟨0, λ1⟩. Here, 70.3% of samples lie within one standard deviation from the mean, 95.3% within two, 98.4%
within three, and there is one outlier at 3.0001 standard deviations away from 0. This result underpins the claim
that the samples used in this experiment have been generated uniformly at random.

35

Table 4.3: Correlations per plaintext class

(a) Correlations experiment #1

b C
AES4

k

λ1,λ0
C

AES4
k

λ1,0

2C3C3B11x 2−15.44 −2−17.84

9A567E78x 2−17.20 2−17.67

39CB0CDCx 2−17.44 −2−18.56

5EA0E538x 2−17.60 −2−19.52

E5F7DE38x 2−17.75 −2−17.12

20321547x −2−18.06 2−18.81

9A01EEABx 2−18.37 2−19.08

1D649732x −2−18.49 2−17.04

9E5600E7x −2−18.98 2−18.35

FBAEF9E9x −2−19.32 2−18.60

C0C102B4x 2−20.12 2−17.53

D5A78172x 2−20.47 2−20.12

BFC6AB67x 2−20.56 2−18.05

89FB23BFx 2−20.78 −2−17.90

F0488353x −2−20.90 −2−16.57

82138799x 2−24.39 2−17.33

(b) Correlations experiment #2

b C
AES4

k

λ1,λ0
C

AES4
k

λ1,0

4F53A073x 2−16.15 2−18.92

87C1ABB1x 2−16.19 −2−18.33

B6D4C9B5x −2−17.13 2−18.38

223FC669x −2−17.21 −2−23.53

944CD767x 2−17.26 2−18.19

96E591F0x 2−17.43 2−18.42

5189FEDDx 2−18.29 2−16.40

3216543Ax −2−19.03 2−17.95

1B3AF07Bx 2−19.38 2−17.54

166FF615x −2−19.75 −2−19.49

BCF41D3Ax −2−19.74 −2−17.41

3FBD312Ax −2−19.74 −2−20.13

0441364Fx 2−20.29 −2−17.40

4A6B30C1x −2−20.21 2−20.99

E7E50D8Fx −2−20.32 2−21.43

9ABF491Bx −2−20.04 2−17.51

(c) Correlations experiment #3

b C
AES4

k

λ1,λ0
C

AES4
k

λ1,0

0B4329B3x −2−16.10 2−21.49

3E2F272Ax 2−17.84 −2−19.97

1A2D9E5Cx −2−17.84 2−21.61

7D0578B9x −2−17.93 2−21.31

A0A3B4EFx 2−18.20 2−19.70

D05E9882x 2−18.39 −2−16.87

EEF183BEx 2−18.44 2−18.03

985254A6x −2−18.46 2−18.34

EB685829x 2−18.69 2−17.68

4F33AC99x −2−18.76 −2−19.29

4B400627x 2−19.39 −2−17.89

3C115FEAx 2−20.54 −2−17.47

513A6C22x −2−20.77 −2−20.42

BB9DB8E6x −2−21.12 −2−18.92

0CFB97BDx 2−21.36 −2−21.92

FB3199D4x −2−23.45 −2−18.69

(d) Correlations experiment #4

b C
AES4

k

λ1,λ0
C

AES4
k

λ1,0

351A608Cx −2−15.63 −2−19.66

A12E7C96x −2−16.15 −2−19.11

470609B6x −2−17.26 −2−17.20

AED80607x −2−17.33 2−17.84

DEFA6672x 2−17.35 2−18.28

BD8E791Fx 2−17.53 −2−16.22

B7F12015x 2−17.85 2−20.78

1122B235x 2−17.86 2−17.29

F74985F1x −2−18.09 2−19.43

250C1472x −2−18.16 −2−18.10

36153352x 2−18.34 2−18.33

53DA8166x 2−18.84 2−19.47

EB9B1701x −2−19.33 −2−17.00

F87F0D4Cx −2−19.44 2−17.19

F6F3652Fx 2−19.75 2−18.21

7838A23Fx −2−22.08 2−18.22

36

Chapter 5

Conclusion

In this thesis we have observed that inv, the inversion function on 28 elements, has five input masks ω for every
output mask v ∈ F8

2 \{0} s.t. Cinv
v,ω = 2−3. Given this fact, we designed the weighted and conditional approximation

techniques which yield a correlation of 2−2 and 2−1, respectively, when applied to inv. As such, both techniques
outperform any linear approximation for the inv function. Of the two, the conditional approximation was used to
construct a statistical distinguisher for four-round AES in the known-plaintext model. Previously, the existence of
such a distinguisher for this cipher was argued to be impossible. In addition to using this distinguisher to construct a
distinguishing attack for AES4

k, we have moreover demonstrated an key-recovery attack capable of extracting 32 bits
of information on the key using only 2125.62 data. Lastly, a small-scale experiment was performed, which validated
that the conditional approximation can be used to achieve a 4-bit advantage when approximating one-round AES
with sixteen active s-boxes and sampling 235.61 data for all sixteen plaintext classes.

With the distinguisher established and validated, this thesis demonstrates that four-round AES is distinguishable
from a random permutation in the known-plaintext model. In addition to illustrating that this round-reduced
version is unsafe, this result furthermore presents a potential weakness in any cipher using it as a subroutine.
Even more impacting is the fact that the vulnerability in four-round AES stems from a caveat in the security
argument of the Wide Trail Strategy. This security argument implicitly assumed that the correlation magnitude of
an approximation for the s-box is upper bounded by 2−3. As such, the conditional approximation forms a threat
to the security of any cipher constructed according to this design framework.

5.1 Future Work
Research is a never-ending adventure, as is the case here. In addition to some issues that arose, a large number
of ideas was pruned during the formation of this thesis. We briefly present seven topics we consider most worth
further investigation.

WTS-based ciphers. Since this work has revealed a caveat for a security argument of the Wide Trail Strategy,
any other cryptographic objects designed according to this framework might be vulnerable to a conditional attack.
As such, the design of these ciphers must be revisited to verify this and patch the design where necessary.

Revisiting the WTS. Additionally, the Wide Trail Strategy itself should be revisited and updated to ensure
future ciphers built according to this framework are not vulnerable to conditional attacks.

The zero-correlation classes. In the results, it was observed that the sample correlations of the “zero-correlation”
classes do not perfectly fit the expected distribution. Further investigation to verify whether this anomaly is per-
sistent under large data sets is necessary. When the anomaly persists, it is worth investigating where this anomaly
originates from.

First and last round. In Section 4.2 the decision was made to restrict ourselves to only use the conditional
approximation for the s-boxes in the first round. The reason underlying this decision relates to Partitioning Crypt-
analysis [24]. By conditioning the plaintext-ciphertext pairs on both the plaintext as well as the ciphertext, it

37

is expected that the classes no longer have equal sizes. It is unclear at this point whether and how this were to
influence the presented attacks. Given that it could improve the correlation of the linear trail, we are very curious
whether the conditional approximation could also be used for the s-boxes in the last round. Perhaps conditioning
and partitioning attacks could be united here.

Inner rounds. In Section 3.3 we only considered extending the weighted and conditional approximations when
the function of interest was combined with an affine operation. Further research in extending these approximations
for combinations with other non-linear approximations should be performed, as this could potentially allow s-boxes
in inner rounds to be approximated using this technique as well.

Additional conditioning masks. During the construction of the conditional approximation for inv in Sec-
tion 3.2.2, two conditioning masks were ultimately used. Preliminary experimental results suggest that for any
output mask v ∈ F8

2 \ {0}, there exists a third mask which, when added to the set of conditioning masks, leads to
the formation of eight plaintext classes, where for on one a 2−1/2 correlation is achieved. Since some of the other
classes in this partition also yield a non-zero correlation, Lemma 2.5 can no longer be used to compute the data
complexity for attacks leveraging this approximation. Still, we reckon that a more careful analysis of the sampled
conditional correlations of the plaintext classes could allow for a key-attack that fits within the full code book and
recovers 48 bits of the key.

The weighted approximation. Recall the discussion on extending the weighted approximation when the func-
tion under investigation is prepended with an affine translation. It was mentioned here that no method was found
to adapt the weights when the translation vector is unknown. Given that its 2−2 correlation is very promising,
further research into this technique should be performed.

38

Bibliography

[1] Alon, N., Matias, Y., and Szegedy, M. The Space Complexity of Approximating the Frequency Moments.
Journal of Computer and System Sciences 58, 1 (1999), 137–147.

[2] Ashur, T., Beyne, T., and Rijmen, V. Revisiting the Wrong-Key-Randomization Hypothesis. Journal of
Cryptology 33, 2 (Apr 2020), 567–594.

[3] Ashur, T., Khan, M., and Nyberg, K. Structural and Statistical Analysis of Multidimensional Linear
Approximations of Random Functions and Permutations. IEEE Transactions on Information Theory 68 (2022),
1296–1315.

[4] Ashur, T., and Posteuca, R. On linear hulls in one round of DES. IACR Cryptol. ePrint Arch. (2018),
635.

[5] Biham, E. On Matsui’s linear cryptanalysis. In Advances in Cryptology — EUROCRYPT’94 (Berlin, Heidel-
berg, 1995), A. De Santis, Ed., Springer Berlin Heidelberg, pp. 341–355.

[6] Biham, E., and Perle, S. Conditional Linear Cryptanalysis – Cryptanalysis of DES with Less Than 242

Complexity. IACR Transactions on Symmetric Cryptology 2018, 3 (Sep. 2018), 215–264.

[7] Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., and Wang, Q. Fides: Lightweight authenticated
cipher with side-channel resistance for constrained hardware. In Cryptographic Hardware and Embedded Systems
- CHES 2013 (Berlin, Heidelberg, 2013), G. Bertoni and J.-S. Coron, Eds., Springer Berlin Heidelberg, pp. 142–
158.

[8] Biryukov, A., De Cannière, C., and Quisquater, M. On Multiple Linear Approximations. In Advances
in Cryptology – CRYPTO 2004 (Berlin, Heidelberg, 2004), M. Franklin, Ed., Springer Berlin Heidelberg,
pp. 1–22.

[9] Bogdanov, A., Leander, G., Nyberg, K., and Wang, M. Integral and multidimensional linear distin-
guishers with correlation zero. In Advances in Cryptology – ASIACRYPT 2012 (Berlin, Heidelberg, 2012),
X. Wang and K. Sako, Eds., Springer Berlin Heidelberg, pp. 244–261.

[10] Bogdanov, A., and Tischhauser, E. On the Wrong Key Randomisation and Key Equivalence Hypotheses
in Matsui’s Algorithm 2. In Fast Software Encryption (Berlin, Heidelberg, 2014), S. Moriai, Ed., Springer
Berlin Heidelberg, pp. 19–38.

[11] Daemen, J. Cipher and hash function design, strategies based on linear and differential cryptanalysis, PhD
Thesis. K.U.Leuven, 1995. http://jda.noekeon.org/.

[12] Daemen, J., Govaerts, R., and Vandewalle, J. Correlation matrices. In Fast Software Encryption
(Berlin, Heidelberg, 1995), B. Preneel, Ed., Springer Berlin Heidelberg, pp. 275–285.

[13] Daemen, J., Knudsen, L., and Rijmen, V. The block cipher Square. In Fast Software Encryption (Berlin,
Heidelberg, 1997), E. Biham, Ed., Springer Berlin Heidelberg, pp. 149–165.

[14] Daemen, J., and Rijmen, V. The Block Cipher BKSQ. In Smart Card Research and Applications (Berlin,
Heidelberg, 2000), J.-J. Quisquater and B. Schneier, Eds., Springer Berlin Heidelberg, pp. 236–245.

[15] Daemen, J., and Rijmen, V. The Wide Trail Design Strategy. In Cryptography and Coding (Berlin,
Heidelberg, 2001), B. Honary, Ed., Springer Berlin Heidelberg, pp. 222–238.

39

http://jda.noekeon.org/

[16] Daemen, J., and Rijmen, V. Correlation Matrices. Springer Berlin Heidelberg, Berlin, Heidelberg, 2020,
pp. 91–113.

[17] Daemen, J., and Rijmen, V. The Design of Rijndael, 2 ed. Springer, 2020.

[18] Dworkin, M., Barker, E., Nechvatal, J., Foti, J., Bassham, L., Roback, E., and Dray, J. Advanced
Encryption Standard (AES), November 2001.

[19] Edgar, T. W., and Manz, D. O. Chapter 2 - Science and Cyber Security. In Research Methods for Cyber
Security, T. W. Edgar and D. O. Manz, Eds. Syngress, 2017, pp. 33–62.

[20] Feistel, H. Cryptography and Computer Privacy. Scientific American 228, 5 (1973), 15–23.

[21] Fielding, R., Nottingham, M., and Reschke, J. “HTTP Semantics”, STD 97, RFC 9110. https:
//www.rfc-editor.org/info/rfc9110, June 2022.

[22] Guo, J., Peyrin, T., and Poschmann, A. The photon family of lightweight hash functions. In Advances
in Cryptology – CRYPTO 2011 (Berlin, Heidelberg, 2011), P. Rogaway, Ed., Springer Berlin Heidelberg,
pp. 222–239.

[23] Guo, J., Peyrin, T., Poschmann, A., and Robshaw, M. The LED Block Cipher. In Cryptographic
Hardware and Embedded Systems – CHES 2011 (Berlin, Heidelberg, 2011), B. Preneel and T. Takagi, Eds.,
Springer Berlin Heidelberg, pp. 326–341.

[24] Harpes, C., and Massey, J. L. Partitioning cryptanalysis. In Fast Software Encryption (Berlin, Heidelberg,
1997), E. Biham, Ed., Springer Berlin Heidelberg, pp. 13–27.

[25] Hellman, M. A cryptanalytic time-memory trade-off. IEEE Transactions on Information Theory 26, 4
(1980), 401–406.

[26] Hermelin, M., Cho, J. Y., and Nyberg, K. Multidimensional Linear Cryptanalysis. Journal of Cryptology
32, 1 (Jan 2019), 1–34.

[27] Hermelin, M., and Nyberg, K. Linear Cryptanalysis Using Multiple Linear Approximations. IACR Cryptol.
ePrint Arch. (2011), 93.

[28] Kaliski, B. S., and Robshaw, M. J. B. Linear Cryptanalysis Using Multiple Approximations. In Advances
in Cryptology — CRYPTO ’94 (Berlin, Heidelberg, 1994), Y. G. Desmedt, Ed., Springer Berlin Heidelberg,
pp. 26–39.

[29] Keliher, L., Meijer, H., and Tavares, S. Improving the Upper Bound on the Maximum Average Linear
Hull Probability for Rijndael. In Selected Areas in Cryptography (Berlin, Heidelberg, 2001), S. Vaudenay and
A. M. Youssef, Eds., Springer Berlin Heidelberg, pp. 112–128.

[30] Keliher, L., Meijer, H., and Tavares, S. E. New Method for Upper Bounding the Maximum Average
Linear Hull Probability for SPNs. In Advances in Cryptology - EUROCRYPT 2001, International Conference
on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding
(2001), B. Pfitzmann, Ed., vol. 2045 of Lecture Notes in Computer Science, Springer, pp. 420–436.

[31] Knudsen, L. R. Contemporary block ciphers. In School organized by the European Educational Forum (1998),
Springer, pp. 105–126.

[32] Lai, X., Massey, J. L., and Murphy, S. Markov ciphers and differential cryptanalysis. In Advances in
Cryptology — EUROCRYPT ’91 (Berlin, Heidelberg, 1991), D. W. Davies, Ed., Springer Berlin Heidelberg,
pp. 17–38.

[33] Leander, G. Small Scale Variants Of The Block Cipher PRESENT. Cryptology ePrint Archive, Paper
2010/143, 2010. https://eprint.iacr.org/2010/143.

[34] Lidl, R., and Niederreiter, H. Introduction to Finite Fields and their Applications, 2 ed. Cambridge
University Press, 1994.

[35] Matsui, M. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryptology — EUROCRYPT ’93
(Berlin, Heidelberg, 1993), T. Helleseth, Ed., Springer Berlin Heidelberg, pp. 386–397.

40

https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://eprint.iacr.org/2010/143

[36] Matsui, M. On correlation between the order of S-boxes and the strength of DES. In Advances in Cryptology
— EUROCRYPT’94 (Berlin, Heidelberg, 1995), A. De Santis, Ed., Springer Berlin Heidelberg, pp. 366–375.

[37] Matsui, M., and Yamagishi, A. A New Method for Known Plaintext Attack of FEAL Cipher. In Advances
in Cryptology - EUROCRYPT ’92, Workshop on the Theory and Application of of Cryptographic Techniques,
Balatonfüred, Hungary, May 24-28, 1992, Proceedings (1992), vol. 658 of Lecture Notes in Computer Science,
Springer, pp. 81–91.

[38] Miyaguchi, S. The FEAL Cipher Family. In Advances in Cryptology-CRYPTO’ 90 (Berlin, Heidelberg,
1991), A. J. Menezes and S. A. Vanstone, Eds., Springer Berlin Heidelberg, pp. 628–638.

[39] Mouha, N., and Dworkin, M. Review of the Advanced Encryption Standard. https://tsapps.nist.go
v/publication/get_pdf.cfm?pub_id=932413, July 2021.

[40] Murphy, S. The Independence of Linear Approximations in Symmetric Cryptanalysis. IEEE Transactions
on Information Theory 52 (2006), 5510–5518.

[41] Murphy, S. The effectiveness of the linear hull effect. Journal of Mathematical Cryptology 6, 2 (2012),
137–147.

[42] National Institute of Standards and Technology (NIST). Data Encryption Standard (DES). https:
//csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.p
df, October 1999.

[43] National Institute of Standards and Technology (NIST). AES Development. https://csrc.nis
t.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-develop
ment, 2021.

[44] Newman, D. J. The Double Dixie Cup Problem. The American Mathematical Monthly 67, 1 (1960), 58–61.

[45] Nyberg, K. Differentially uniform mappings for Cryptography. In Advances in Cryptology — EUROCRYPT
’93 (Berlin, Heidelberg, 1994), T. Helleseth, Ed., Springer Berlin Heidelberg, pp. 55–64.

[46] Nyberg, K. Linear approximation of block ciphers. In Advances in Cryptology — EUROCRYPT’94 (Berlin,
Heidelberg, 1995), A. De Santis, Ed., Springer Berlin Heidelberg, pp. 439–444.

[47] Nyberg, K. Affine Linear Cryptanalysis. Cryptography and Communications 11, 3 (May 2019), 367–377.

[48] O’Neill, M. E. PCG: A family of simple fast space-efficient statistically good algorithms for random number
generation. ACM Transactions on Mathematical Software (2014).

[49] O’Neill, M. E. PCG, A Family of Better Random Number Generators. https://www.pcg-random.org/,
2018.

[50] Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., and De Win, E. The cipher SHARK. In Fast
Software Encryption (Berlin, Heidelberg, 1996), D. Gollmann, Ed., Springer Berlin Heidelberg, pp. 99–111.

[51] Rivest, R. L., Robshaw, M. J., Sidney, R., and Yin, Y. L. The RC6 block cipher. In First advanced
encryption standard (AES) conference (1998), p. 16.

[52] Röck, A., and Nyberg, K. Generalization of Matsui’s Algorithm 1 to linear hull for key-alternating block
ciphers. Designs, codes and cryptography 66, 1 (2013), 175–193.

[53] Rogaway, P. The security of DESX. RSA Laboratories Cryptobytes 2, 2 (1996).

[54] Selçuk, A. A. On Probability of Success in Linear and Differential Cryptanalysis. Journal of Cryptology 21,
1 (Jan 2008), 131–147.

[55] Shannon, C. E. Communication theory of secrecy systems. The Bell System Technical Journal 28, 4 (1949),
656–715.

[56] Siil, K. A. An Introduction to Cryptanalysis. AT&T Technical Journal 73, 5 (1994), 24–29.

41

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932413
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932413
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://www.pcg-random.org/

Appendix A

Proofs

This appendix contains the proofs of some of the lemmas presented in the thesis. The proofs are presented in the
same order as the lemmas are introduced.

Lemma 2.1 (Balanced function). Let n ∈ N+ and a ∈ Fn
2 be arbitrary. It holds that Imb(a⊤x) = δ(a) · |Fn

2 |
2 .

Proof. We will prove the statement by induction on n. Let n = 1 and a ∈ Fn
2 arbitrary. Then

Imb(a⊤x) = 1
2
∑
x∈F2

(−1)a⊤x = 1
2
(
(−1)a∧0 + (−1)a∧1) = 1

2(1 + (−1)a) = 1
2 · 2δ(a) = δ(a) · |F2|

2 .

Next, we demonstrate that if the lemma holds for some n = k ≥ 1, it still holds for n = k + 1. Let a ∈ Fk+1
2

arbitrary and define a := (a1, . . . , ak) ∈ Fk
2 and a′ := ak+1 ∈ F2. Then

Imb(a⊤x) = 1
2
∑

x∈Fk+1
2

(−1)a⊤x

= 1
2
∑

x∈Fk
2

∑
y∈F2

(−1)a⊤x⊕a′∧y

= 1
2

∑
x∈Fk

2

(−1)a⊤x

∑
y∈F2

(−1)a′∧y

= 1

2 · δ(a) · |Fn
2 | · δ(a′) · |F2|

= δ(a) · |Fk+1
2 |
2 .

The lemma follows by induction on n.

Lemma 2.2. Let f, g : Fn
2 → F2 be arbitrary Boolean functions. The correlation C(f, g) of these two functions can

be computed as
C(f, g) = 1

|Fn
2 |
∑

x∈Fn
2

(−1)f(x)⊕g(x). (2.3)

42

Proof. Observe that |Fn
2 | = 2n. Then

C(f, g) = 2 · P[f(x) = g(x)] − 1
= 2 · P[f(x) ⊕ g(x) = 0] − 1
= 2 · 2−n · |{x ∈ Fn

2 | f(x) ⊕ g(x) = 0}| − 1

= 2 · 2−n ·
∣∣∣{x ∈ Fn

2

∣∣∣ (−1)f(x)⊕g(x) = 1
}∣∣∣− 1

= 2 · 2−n ·
∣∣∣∣{x ∈ Fn

2

∣∣∣∣ 1
2 ·
(

(−1)f(x)⊕g(x) + 1
)

= 1
}∣∣∣∣− 1

= 2 · 2−n ·

∑
x∈Fn

2

1
2 ·
(

(−1)f(x)⊕g(x) + 1
)− 1

= 2−n ·

∑
x∈Fn

2

(
(−1)f(x)⊕g(x) + 1

)− 1

= 2−n ·

2n +
∑

x∈Fn
2

(−1)f(x)⊕g(x)

− 1

= 1
|Fn

2 |
∑

x∈Fn
2

(−1)f(x)⊕g(x).

Lemma 2.4 (Lemma 2, [35]). Let t be the number of given random plaintext-ciphertext pairs and |CF
λ | be the

absolute correlation contribution of the trail λ that dominates ⟨u, v⟩. Given that |CF
λ | is sufficiently small, the

success rate p∗ of Algorithm 1 is

p∗ =
∫ ∞

−2
√

t·|CF
λ

|

1√
2π

e−x2/2dx = Φ
(

|CF
λ | ·

√
t
)

, (2.16)

where Φ denotes the cumulative distribution function of the standard normal distribution.

Proof. Observe that Algorithm 1 is a decision problem at its core: it is up to the adversary to establish whether
CEk

v,u = CF
λ or CEk

v,u = −CF
λ and use the sample correlation Ĉ ≈ CEk

v,u to decide this. Given that CEk
v,u ≈ Ck

λ =
(−1)λ⊤k · sgn(CF

λ) · |CF
λ |, the value of b := λ⊤k can be derived when this decision is made. Let us start with

deriving the statistical distribution of the sample correlation Ĉ. We present this derivation for a general situation
and then apply it to this specific case.

Distribution of sample correlation. Let T denote a random data multi-set used to determine the sample
correlation Ĉ for some linear characteristic ⟨u, v⟩ applied to an n-bit block cipher. Assume the set T contains
t plaintext-ciphertext samples (x, Ek(x)) with all encryptions performed under the same, unknown key k. We
use the random variable q̂ to express the number of elements in T for which the characteristic is correct, i.e.
q̂ = |{(x, Ek(x)) ∈ T | u⊤x ⊕ v⊤Ek(x) = 0}|. Since the samples in T are all drawn uniformly at random from the
full plaintext-ciphertext-pair space, q̂ is distributed according to B(t, pk), where B denotes the binomial distribution
and pk = P

[
u⊤x ⊕ v⊤Ek(x) = 0

]
. Observe that for large enough t this distribution is closely approached by the

normal distribution N (tpk, tpk(1 − pk)). When we compute the sample probability p̂ as q̂/t, it follows that this
random variable is distributed as N (pk, pk(1 − pk)/t). It then also holds that the sample correlation ĉ = 2p̂ − 1 is
distributed as ĉ ∼ N (2pk − 1, 4pk(1 − pk)/t) ≡ N

(
c, (1 − c2)/t

)
, with c = 2pk − 1.

Applied to this situation, it thus holds that Ĉ ∼ N (CEk
v,u, (1 − (CEk

v,u)2)/t). Since |CEk
v,u| is assumed static under k,

it is best to guess that b = 0 when sgn(Ĉ) = sgn(CF
λ) and 1 otherwise. The probability that this guess is correct

depends on the overlap between the distributions N0 and N1, with Ni := N ((−1)i · |CF
λ |, (1 − |CF

λ |2)/t); the smaller
the overlap, the greater the chance of guessing correct. Given that CF

λ is fixed for the trail, the overlap between

43

these probabilities can only be reduced by increasing the sample size t. Let us now derive the relation between t,
the correlation magnitude |CF

λ |, and the probability of guessing correct p∗. Observe that we may express p∗ as

p∗ = P
[
sgn(Ĉ) = sgn(CF

λ)
∣∣∣ b = 0

]
· P[b = 0] + P

[
sgn(Ĉ) = − sgn(CF

λ)
∣∣∣ b = 1

]
· P[b = 1].

Under the assumption that P[b = 0] = P[b = 1] = 1
2 , we can use random variables X ∼ N0 and Y ∼ N1 to express

this success probability as

p∗ = P[X > 0] · 1
2 + P[Y < 0] · 1

2 = 1
2(P[X > 0] + P[Y < 0]) = 1

2(P[X > 0] + P[X > 0]) = P[X > 0],

since X and −Y are identically distributed. When rewriting X to a standard normal random variable, we find that

p∗ = P[X > 0] = P

 X − |CF
λ |√

(1 − |CF
λ |2)/t

>
−|CF

λ |√
(1 − |CF

λ |2)/t

 = Φ

 |CF
λ |√

(1 − |CF
λ |2)/t

 ≈ Φ
(

|CF
λ | ·

√
t
)

,

for sufficiently small |CF
λ |.

Lemma 3.7. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean function and let L : Fn
2 → Fn

2 be an arbitrary
linear permutation. Moreover, let U ⊆ Fn

2 be arbitrary, with r := |U |. For any v ∈ Fm
2 , and W ∈ Rr it holds that

CF ◦L
v,U ′,W = CF

v,U,W , (3.14)

where U ′ :=
{

M⊤
L ui

∣∣ ui ∈ U
}

.

Proof. We first observe that L−1 exists since L is a linear permutation. It thus holds that

(M⊤
L u)⊤L−1(x) = (M⊤

L u)⊤ML−1x = (M⊤
L−1M⊤

L u)⊤x = u⊤x

for any u, x ∈ Fn
2 . It can be used to show that

(QU ′,W ◦ L−1)(x) = QU ′,W (L−1(x))

=
r∑

i=1
wi · (−1)u′⊤

i L−1(x)

=
r∑

i=1
wi · (−1)(M⊤

L−1 ui)⊤L−1(x)

=
r∑

i=1
wi · (−1)u⊤

i x

= QU,W (x),

where r := |U |. Note that this implies that QU ′,W ◦ L−1 ≡ QU,W and thus MU ′,W ◦ L−1 ≡ MU,W . It then follows
that

CF ◦L
v,U ′,W = C(MU ′,W , v⊤(F ◦ L))

= C(MU ′,W ◦ L−1, v⊤(F ◦ L ◦ L−1))
= C(MU,W , v⊤F)
= CF

v,U,W .

Lemma 3.11. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean function and let L : Fn
2 → Fn

2 be an arbitrary
linear permutation. For arbitrary u ∈ Fn

2 , v ∈ Fm
2 and U ⊆ Fn

2 it holds that

CF ◦L
v,u′ |x∈Rb

U′
= CF

v,u|x∈Rb
U

, (3.19)

where u′ := M⊤
L u, U ′ := {M⊤

L ui | ui ∈ U}.

44

Proof. We observe that u⊤Mx = (M⊤u)⊤x for any M . This allows us to show that

CF ◦L
v,u′

∣∣∣x∈Rb
U′

= 1
|Rb

U ′ |
∑

x∈Rb
U′

(−1)u′⊤x⊕v⊤F (L(x))

= 1
|Rb

U ′ |
∑

x;((M⊤
L

u1)⊤x,...,(M⊤
L

up)⊤x)=b

(−1)(M⊤
L u)⊤x⊕v⊤F (MLx)

= 1
|Rb

U ′ |
∑

x;(u⊤
1 (MLx),...,u⊤

p (MLx))=b

(−1)u⊤(MLx)⊕v⊤F (MLx)

= 1
|Rb

U ′ |
∑

ML−1 y;(u⊤
1 y,...,u⊤

p y)=b

(−1)u⊤y⊕v⊤F (y)

(1)= 1
|Rb

U |
∑

y;(u⊤
1 y,...,u⊤

p y)=b

(−1)u⊤y⊕v⊤F (y)

= 1
|Rb

U |
∑

y∈Rb
U

(−1)u⊤y⊕v⊤F (y)

= CF
v,u

∣∣∣x∈Rb
U

.

Observe that step (1) holds because ML−1 is a permutation; we only reorder the elements in the summation in this
step.

45

Appendix B

Look up table AES s-box

The look up table for the inv function and s-box S are provided in Table B.1 and B.2, respectively. In these tables,
the value for X−1(xyx) respectively S(xyx) is stated at the intersection of row x and column y.

Table B.1: Look-up table for inv; the inversion function on F28 .

y
· 0 · 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · A · B · C · D · E · F

x

0 · 00x 01x 8Dx F6x CBx 52x 7Bx D1x E8x 4Fx 29x C0x B0x E1x E5x C7x
1 · 74x B4x AAx 4Bx 99x 2Bx 60x 5Fx 58x 3Fx FDx CCx FFx 40x EEx B2x
2 · 3Ax 6Ex 5Ax F1x 55x 4Dx A8x C9x C1x 0Ax 98x 15x 30x 44x A2x C2x
3 · 2Cx 45x 92x 6Cx F3x 39x 66x 42x F2x 35x 20x 6Fx 77x BBx 59x 19x
4 · 1Dx FEx 37x 67x 2Dx 31x F5x 69x A7x 64x ABx 13x 54x 25x E9x 09x
5 · EDx 5Cx 05x CAx 4Cx 24x 87x BFx 18x 3Ex 22x F0x 51x ECx 61x 17x
6 · 16x 5Ex AFx D3x 49x A6x 36x 43x F4x 47x 91x DFx 33x 93x 21x 3Bx
7 · 79x B7x 97x 85x 10x B5x BAx 3Cx B6x 70x D0x 06x A1x FAx 81x 82x
8 · 83x 7Ex 7Fx 80x 96x 73x BEx 56x 9Bx 9Ex 95x D9x F7x 02x B9x A4x
9 · DEx 6Ax 32x 6Dx D8x 8Ax 84x 72x 2Ax 14x 9Fx 88x F9x DCx 89x 9Ax
A · FBx 7Cx 2Ex C3x 8Fx B8x 65x 48x 26x C8x 12x 4Ax CEx E7x D2x 62x
B · 0Cx E0x 1Fx EFx 11x 75x 78x 71x A5x 8Ex 76x 3Dx BDx BCx 86x 57x
C · 0Bx 28x 2Fx A3x DAx D4x E4x 0Fx A9x 27x 53x 04x 1Bx FCx ACx E6x
D · 7Ax 07x AEx 63x C5x DBx E2x EAx 94x 8Bx C4x D5x 9Dx F8x 90x 6Bx
E · B1x 0Dx D6x EBx C6x 0Ex CFx ADx 08x 4Ex D7x E3x 5Dx 50x 1Ex B3x
F · 5Bx 23x 38x 34x 68x 46x 03x 8Cx DDx 9Cx 7Dx A0x CDx 1Ax 41x 1Cx

46

Table B.2: Look-up table for the AES s-box function S

y
· 0 · 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · A · B · C · D · E · F

x

0 · 63x 7Cx 77x 7Bx F2x 6Bx 6Fx C5x 30x 01x 67x 2Bx FEx D7x ABx 76x
1 · CAx 82x C9x 7Dx FAx 59x 47x F0x ADx D4x A2x AFx 9Cx A4x 72x C0x
2 · B7x FDx 93x 26x 36x 3Fx F7x CCx 34x A5x E5x F1x 71x D8x 31x 15x
3 · 04x C7x 23x C3x 18x 96x 05x 9Ax 07x 12x 80x E2x EBx 27x B2x 75x
4 · 09x 83x 2Cx 1Ax 1Bx 6Ex 5Ax A0x 52x 3Bx D6x B3x 29x E3x 2Fx 84x
5 · 53x D1x 00x EDx 20x FCx B1x 5Bx 6Ax CBx BEx 39x 4Ax 4Cx 58x CFx
6 · D0x EFx AAx FBx 43x 4Dx 33x 85x 45x F9x 02x 7Fx 50x 3Cx 9Fx A8x
7 · 51x A3x 40x 8Fx 92x 9Dx 38x F5x BCx B6x DAx 21x 10x FFx F3x D2x
8 · CDx 0Cx 13x ECx 5Fx 97x 44x 17x C4x A7x 7Ex 3Dx 64x 5Dx 19x 73x
9 · 60x 81x 4Fx DCx 22x 2Ax 90x 88x 46x EEx B8x 14x DEx 5Ex 0Bx DBx
A · E0x 32x 3Ax 0Ax 49x 06x 24x 5Cx C2x D3x ACx 62x 91x 95x E4x 79x
B · E7x C8x 37x 6Dx 8Dx D5x 4Ex A9x 6Cx 56x F4x EAx 65x 7Ax AEx 08x
C · BAx 78x 25x 2Ex 1Cx A6x B4x C6x E8x DDx 74x 1Fx 4Bx BDx 8Bx 8Ax
D · 70x 3Ex B5x 66x 48x 03x F6x 0Ex 61x 35x 57x B9x 86x C1x 1Dx 9Ex
E · E1x F8x 98x 11x 69x D9x 8Ex 94x 9Bx 1Ex 87x E9x CEx 55x 28x DFx
F · 8Cx A1x 89x 0Dx BFx E6x 42x 68x 41x 99x 2Dx 0Fx B0x 54x BBx 16x

47

Appendix C

MDS matrix

In Section 2.3.5, the algebraic description of the MixColumns function is presented. This function can be decomposed
into the application of the function H to each column of the state. Since this function is linear, there exists a linear
matrix MH such that H(x) = MHx for all x ∈ F32

2 . This matrix is presented in Equation C.1. To its readability,
all one-entries in this matrix are printed in bold, while all zero-entries are represented with a dot. Moreover, three
horizontal and three vertical lines have been included to aid in understanding the effect of applying this matrix to
a four-byte column of the state.

MH =

· 1 · · · · · · 1 1 · · · · · · 1 · · · · · · · 1 · · · · · · ·
· · 1 · · · · · · 1 1 · · · · · · 1 · · · · · · · 1 · · · · · ·
· · · 1 · · · · · · 1 1 · · · · · · 1 · · · · · · · 1 · · · · ·
1 · · · 1 · · · 1 · · 1 1 · · · · · · 1 · · · · · · · 1 · · · ·
1 · · · · 1 · · 1 · · · 1 1 · · · · · · 1 · · · · · · · 1 · · ·
· · · · · · 1 · · · · · · 1 1 · · · · · · 1 · · · · · · · 1 · ·
1 · · · · · · 1 1 · · · · · 1 1 · · · · · · 1 · · · · · · · 1 ·
1 · · · · · · · 1 · · · · · · 1 · · · · · · · 1 · · · · · · · 1
1 · · · · · · · · 1 · · · · · · 1 1 · · · · · · 1 · · · · · · ·
· 1 · · · · · · · · 1 · · · · · · 1 1 · · · · · · 1 · · · · · ·
· · 1 · · · · · · · · 1 · · · · · · 1 1 · · · · · · 1 · · · · ·
· · · 1 · · · · 1 · · · 1 · · · 1 · · 1 1 · · · · · · 1 · · · ·
· · · · 1 · · · 1 · · · · 1 · · 1 · · · 1 1 · · · · · · 1 · · ·
· · · · · 1 · · · · · · · · 1 · · · · · · 1 1 · · · · · · 1 · ·
· · · · · · 1 · 1 · · · · · · 1 1 · · · · · 1 1 · · · · · · 1 ·
· · · · · · · 1 1 · · · · · · · 1 · · · · · · 1 · · · · · · · 1
1 · · · · · · · 1 · · · · · · · · 1 · · · · · · 1 1 · · · · · ·
· 1 · · · · · · · 1 · · · · · · · · 1 · · · · · · 1 1 · · · · ·
· · 1 · · · · · · · 1 · · · · · · · · 1 · · · · · · 1 1 · · · ·
· · · 1 · · · · · · · 1 · · · · 1 · · · 1 · · · 1 · · 1 1 · · ·
· · · · 1 · · · · · · · 1 · · · 1 · · · · 1 · · 1 · · · 1 1 · ·
· · · · · 1 · · · · · · · 1 · · · · · · · · 1 · · · · · · 1 1 ·
· · · · · · 1 · · · · · · · 1 · 1 · · · · · · 1 1 · · · · · 1 1
· · · · · · · 1 · · · · · · · 1 1 · · · · · · · 1 · · · · · · 1
1 1 · · · · · · 1 · · · · · · · 1 · · · · · · · · 1 · · · · · ·
· 1 1 · · · · · · 1 · · · · · · · 1 · · · · · · · · 1 · · · · ·
· · 1 1 · · · · · · 1 · · · · · · · 1 · · · · · · · · 1 · · · ·
1 · · 1 1 · · · · · · 1 · · · · · · · 1 · · · · 1 · · · 1 · · ·
1 · · · 1 1 · · · · · · 1 · · · · · · · 1 · · · 1 · · · · 1 · ·
· · · · · 1 1 · · · · · · 1 · · · · · · · 1 · · · · · · · · 1 ·
1 · · · · · 1 1 · · · · · · 1 · · · · · · · 1 · 1 · · · · · · 1
1 · · · · · · 1 · · · · · · · 1 · · · · · · · 1 1 · · · · · · ·

(C.1)

48

Appendix D

Masks

Table D.1: The set Ωv = {ω1, ω2, ω3, ω4, ω5} for every v ∈ F8
2 \ {0}.

v ω1 ω2 ω3 ω4 ω5
01x 84x 63x F3x E7x 77x
02x 7Cx A2x D2x DEx AEx
03x 42x 31x F9x 73x BBx
04x 3Ex 69x D1x 57x EFx
05x 5Ax CDx FDx 97x A7x
06x D4x 9Ax 61x 4Ex B5x
07x A1x 18x FCx B9x 5Dx
08x 80x 97x DAx 17x 5Ax
09x 9Fx ABx 68x 34x F7x
0Ax ADx 53x CBx FEx 66x
0Bx 4Cx 89x 93x C5x DFx
0Cx AEx A2x A0x 0Cx 0Ex
0Dx EAx CDx B0x 27x 5Ax
0Ex D0x DCx AEx 0Cx 7Ex
0Fx C9x 44x 54x 8Dx 9Dx
10x 47x 33x 7Bx 74x 3Cx
11x 40x 8Bx EDx CBx ADx
12x 4Fx 9Ax FBx D5x B4x
13x 9Ex 1Bx 43x 85x DDx
14x 9Ax 60x 61x FAx FBx
15x 56x A9x B3x FFx E5x
16x A6x E2x C9x 44x 6Fx
17x CAx 08x 2Cx C2x E6x
18x 57x 50x D1x 07x 86x
19x 7Fx F2x C9x 8Dx B6x
1Ax 1Ex 99x 92x 87x 8Cx
1Bx 75x 13x D8x 66x ADx
1Cx E8x BFx 86x 57x 6Ex
1Dx C4x 4Ax 78x 8Ex BCx
1Ex 1Ax 20x 6Cx 3Ax 76x
1Fx 64x 22x AAx 46x CEx
20x 23x 3Dx 99x 1Ex BAx
21x 4Dx 6Ax EAx 27x A7x
22x F6x E9x DBx 1Fx 2Dx
23x 20x 76x E5x 56x C5x
24x A7x 6Ax DAx CDx 7Dx

v ω1 ω2 ω3 ω4 ω5
25x 54x 3Bx D9x 6Fx 8Dx
26x 43x 85x 94x C6x D7x
27x CFx C2x 21x 0Dx EEx
28x C5x 3Ax 93x FFx 56x
29x CDx 30x B0x FDx 7Dx
2Ax 2Bx 54x D9x 7Fx F2x
2Bx 2Ax 6Dx 51x 47x 7Bx
2Cx DAx CDx 30x 17x EAx
2Dx D3x F1x 64x 22x B7x
2Ex 65x E1x F3x 84x 96x
2Fx F5x 71x 82x 84x 77x
30x C2x 29x 2Cx EBx EEx
31x ABx A8x 68x 03x C3x
32x 3Fx 79x 5Bx 46x 64x
33x 6Fx 10x E2x 7Fx 8Dx
34x 8Ax 09x C1x 83x 4Bx
35x 8Fx 43x 49x CCx C6x
36x 3Ax 6Cx 89x 56x B3x
37x C8x 38x B2x F0x 7Ax
38x F4x C3x ABx 37x 5Fx
39x B9x F8x E4x 41x 5Dx
3Ax 36x 28x B1x 1Ex 87x
3Bx 62x 25x 3Cx 47x 5Ex
3Cx 8Dx 10x 3Bx 9Dx B6x
3Dx 89x 20x 56x A9x DFx
3Ex 04x B9x E0x BDx E4x
3Fx 32x 55x 91x 67x A3x
40x 11x 9Ex CCx 8Fx DDx
41x 50x 39x D6x 69x 86x
42x 03x 5Cx 68x 5Fx 6Bx
43x 26x 13x 53x 35x 75x
44x 7Bx 74x 6Dx 0Fx 16x
45x 69x E8x 86x 81x EFx
46x 78x 67x 32x 1Fx 4Ax
47x 10x 3Bx E2x 2Bx F2x
48x D9x B6x A6x 6Fx 7Fx

v ω1 ω2 ω3 ω4 ω5
49x 53x 35x EDx 66x BEx
4Ax AAx 1Dx ECx B7x 46x
4Bx 68x 34x A8x 5Cx C0x
4Cx 0Bx A4x B1x AFx BAx
4Dx 21x C2x CAx E3x EBx
4Ex E7x E1x 90x 06x 77x
4Fx 12x 90x F5x 82x E7x
50x 41x 18x E4x 59x A5x
51x E2x C9x 9Dx 2Bx 7Fx
52x 66x 98x D8x FEx BEx
53x 49x 0Ax 9Ex 43x D7x
54x 25x 2Ax 7Bx 0Fx 5Ex
55x 95x AAx 79x 3Fx ECx
56x 15x 23x 28x 36x 3Dx
57x 18x 04x E4x 1Cx FCx
58x EDx 8Bx 98x 66x 75x
59x B8x 50x D6x E8x 6Ex
5Ax 05x 08x CAx 0Dx CFx
5Bx E9x 32x 78x DBx 91x
5Cx B2x F0x F9x 42x 4Bx
5Dx 86x 81x 39x 07x BFx
5Ex F2x C9x 54x 3Bx A6x
5Fx 7Ax 38x C1x 42x BBx
60x E1x 14x 96x F5x 77x
61x 77x 71x 63x 06x 14x
62x 3Bx 9Dx D9x A6x E2x
63x D5x 01x 61x D4x B4x
64x 1Fx 32x A3x 2Dx BCx
65x 2Ex 9Bx FAx B5x D4x
66x 52x 58x 49x 0Ax 1Bx
67x B7x 88x F1x 3Fx 46x
68x 4Bx 09x 31x 42x 7Ax
69x 45x 41x E0x 04x A5x
6Ax C7x 21x E3x E6x 24x
6Bx C1x 42x B2x 83x 73x
6Cx BAx A4x 8Cx 1Ex 36x

49

v ω1 ω2 ω3 ω4 ω5
6Dx 9Dx 2Bx D9x B6x 44x
6Ex E4x F8x 59x 1Cx BDx
6Fx 33x 25x 48x 16x 7Bx
70x ACx D0x D2x 7Cx 7Ex
71x FAx D5x 61x 2Fx 9Bx
72x DCx 72x A0x AEx 7Cx
73x 9Cx 03x 6Bx 9Fx F7x
74x B6x 10x F2x A6x 44x
75x 1Bx 58x 94x 43x 8Fx
76x B1x 1Ex 92x AFx 23x
77x 61x 60x 4Ex 01x 2Fx
78x 46x 5Bx 88x 1Dx CEx
79x BCx 32x E9x 8Ex 55x
7Ax 5Fx 68x 9Fx 37x C0x
7Bx 44x 10x 2Bx 54x 6Fx
7Cx 02x 70x DCx 72x DEx
7Dx E6x C2x 29x 24x CFx
7Ex DEx D0x 70x 0Ex AEx
7Fx 19x 2Ax 48x 33x 51x
80x 08x CFx E6x C7x EEx
81x F8x 45x 5Dx BDx A5x
82x B5x 9Ax FAx 2Fx 4Fx
83x A8x 9Cx 6Bx 34x C3x
84x 01x 2Ex B4x 2Fx B5x
85x 98x 13x BEx 8Bx 26x
86x 5Dx 18x 41x 45x 1Cx
87x 93x 89x A9x 1Ax 3Ax
88x 8Ex E9x 78x 67x F6x
89x 3Dx 0Bx BAx 36x 87x
8Ax 34x C0x C3x F4x F7x
8Bx 94x 11x 58x 85x CCx
8Cx FFx 1Ax 93x E5x 6Cx
8Dx 3Cx 33x 19x 0Fx 25x
8Ex 88x 1Dx 79x 95x F1x
8Fx 35x 40x D8x 75x EDx
90x 9Bx D5x D4x 4Ex 4Fx
91x ECx D3x 5Bx 3Fx B7x
92x A9x 1Ax 76x B3x DFx
93x 87x 0Bx 28x 8Cx AFx
94x 8Bx ADx 75x 26x FEx
95x 55x DBx A3x 8Ex F6x
96x B4x 9Ax 60x 2Ex D4x
97x EBx 05x 08x EEx E3x
98x 85x 52x 58x D7x DDx
99x DFx 1Ax 20x C5x FFx
9Ax 14x 12x 82x 06x 96x
9Bx 90x F5x 71x 65x E1x
9Cx 73x F0x C8x 83x BBx
9Dx 6Dx 62x 51x 0Fx 3Cx

v ω1 ω2 ω3 ω4 ω5
9Ex 13x 40x ADx 53x BEx
9Fx 09x 7Ax C8x 73x C1x
A0x A0x ACx D2x 0Cx 72x
A1x 07x B8x D1x BFx D6x
A2x D2x D0x 0Cx 02x DEx
A3x F1x CEx 64x 3Fx 95x
A4x B3x 4Cx 6Cx FFx DFx
A5x D1x 50x B8x 81x 69x
A6x 16x 48x 62x 5Ex 74x
A7x 24x 21x EBx 05x CFx
A8x 83x 31x C8x B2x 4Bx
A9x 92x 15x 3Dx 87x AFx
AAx 4Ax 55x BCx 1Fx F6x
ABx 31x 38x C8x 09x F9x
ACx 70x A0x DCx D0x ACx
ADx 0Ax 11x 94x 1Bx 9Ex
AEx 0Cx 02x 72x 0Ex 7Ex
AFx E5x A9x 93x 4Cx 76x
B0x EEx E3x 29x 0Dx C7x
B1x 76x 3Ax B3x 4Cx C5x
B2x 5Cx 6Bx A8x 37x F4x
B3x A4x B1x 92x 15x 36x
B4x 96x 12x 63x 84x F5x
B5x 82x 84x 65x 06x E7x
B6x 74x 19x 48x 6Dx 3Cx
B7x 67x 4Ax 91x 2Dx F6x
B8x 59x F8x FCx A1x A5x
B9x 39x 3Ex D6x 07x EFx
BAx 6Cx 20x 89x 4Cx E5x
BBx C3x C0x 9Cx 03x 5Fx
BCx 79x 64x AAx 1Dx D3x
BDx BFx 81x D1x 3Ex 6Ex
BEx CCx 49x 52x 85x 9Ex
BFx BDx A1x E0x 1Cx 5Dx
C0x F0x 4Bx 7Ax BBx 8Ax
C1x 6Bx 34x F4x 5Fx 9Fx
C2x 30x 27x 7Dx 17x 4Dx
C3x BBx 31x 38x 8Ax 83x
C4x 1Dx D3x F1x CEx ECx
C5x 28x 23x 99x 0Bx B1x
C6x FEx D8x CBx 26x 35x
C7x 6Ax 80x B0x EAx DAx
C8x 37x ABx 9Fx 9Cx A8x
C9x 0Fx 19x 51x 16x 5Ex
CAx 17x 5Ax EAx 4Dx FDx
CBx D7x 0Ax 11x DDx C6x
CCx BEx 8Bx 40x 35x FEx
CDx 29x 2Cx 24x 05x 0Dx
CEx DBx C4x 78x 1Fx A3x

v ω1 ω2 ω3 ω4 ω5
CFx 27x 5Ax 80x 7Dx A7x
D0x 0Ex 70x A2x 7Ex ACx
D1x A5x A1x 18x 04x BDx
D2x A2x A0x 70x 02x D2x
D3x 2Dx 91x E9x BCx C4x
D4x 06x 63x 90x 65x 96x
D5x 63x 71x 90x 12x F3x
D6x E0x 41x 59x A1x B9x
D7x CBx EDx 98x 26x 53x
D8x DDx 1Bx 52x C6x 8Fx
D9x 48x 6Dx 2Ax 25x 62x
DAx 2Cx 08x EBx 24x C7x
DBx CEx 22x 5Bx ECx 95x
DCx 72x 7Cx ACx 0Ex DEx
DDx D8x 13x 40x CBx 98x
DEx 7Ex 02x A2x 7Cx DCx
DFx 99x 92x A4x 0Bx 3Dx
E0x D6x E8x 69x 3Ex BFx
E1x 60x 4Ex 9Bx 2Ex FBx
E2x 51x 16x 62x 47x 33x
E3x FDx B0x 6Ax 4Dx 97x
E4x 6Ex 39x 50x 57x 3Ex
E5x AFx BAx 23x 15x 8Cx
E6x 7Dx 6Ax 80x 17x FDx
E7x 4Ex 01x FBx 4Fx B5x
E8x 1Cx 59x E0x 45x FCx
E9x 5Bx 79x 88x 22x D3x
EAx 0Dx 21x CAx 2Cx C7x
EBx 97x 30x DAx A7x 4Dx
ECx 91x 4Ax C4x DBx 55x
EDx 58x 49x D7x 11x 8Fx
EEx B0x 97x 30x 27x 80x
EFx FCx F8x B9x 04x 45x
F0x C0x F7x 9Cx 37x 5Cx
F1x A3x 2Dx C4x 8Ex 67x
F2x 5Ex 19x 2Ax 47x 74x
F3x FBx 01x D5x FAx 2Ex
F4x 38x B2x C1x 8Ax F9x
F5x 2Fx 60x 9Bx 4Fx B4x
F6x 22x 88x 95x AAx B7x
F7x F9x F0x 8Ax 09x 73x
F8x 81x B8x 6Ex 39x EFx
F9x F7x 03x ABx F4x 5Cx
FAx 71x 14x 82x 65x F3x
FBx F3x E1x 14x 12x E7x
FCx EFx E8x B8x 07x 57x
FDx E3x 05x 29x E6x CAx
FEx C6x 0Ax 52x CCx 94x
FFx 8Cx 99x 28x 15x A4x

50

Appendix E

Experiment code

In this appendix we present the code used to run the experiment presented in Section 4.4. For this experiment,
the PCG [48] random number generator was used. The source code of this random number generator can be found
in [49]. Lastly, the project was compiled using g++ with the -O3, -flto and -fopenmp flags.

Experiment.cpp
include "math.h"
include "newToolbox.h"
include "pcg_random.hpp"

// Test settings
static constexpr uint16_t NREXPERIMENTS = 0x4;
static constexpr uint16_t NRTRIALS = 0x10;
static constexpr uint64_t SAMPLESIZE = 0xC35C80000;
static constexpr State IPM = {0x803CA993 , 0xAAA99C80 , 0x3CC158A9 , 0xC1D9A9AA };
static constexpr State OPM = {0x00000039 , 0x00003400 , 0x002d0000 , 0x2d000000 };
static constexpr State W1 = {0x7D6293E5 , 0x7993C07D , 0x627A9493 , 0x7A9D9379 };
static constexpr State W6 = {0xEA19203A , 0xCE206BEA , 0x19F94920 , 0xF9F220CE };

// Randomization
pcg64 globalRandom(time (0));

// Compute ID for correct plaintext class
uint32_t getCorrectPlaintextClassID(Key key)
{

uint32_t plaintextClass = 0;
for (uint16_t i = 0; i < 16; i++)
{

uint32_t w1Parity = P8(key.bytes[i] & W1.bytes[i]);
plaintextClass ˆ= w1Parity << (2 * i + 1);

uint32_t w6Parity = P8(key.bytes[i] & W6.bytes[i]);
plaintextClass ˆ= w6Parity << (2 * i);

}
return plaintextClass;

}

// Compute W1 parity value , given plaintext class ID and index of plaintext byte
uint8_t getW1parity(uint64_t plaintextClassId , uint16_t byteIdx)
{

return (plaintextClassId >> (2 * byteIdx + 1)) & 0x01;
}

// Compute W6 parity value , given plaintext class ID and index of plaintext byte
uint8_t getW6parity(uint64_t plaintextClassId , uint16_t byteIdx)
{

return (plaintextClassId >> (2 * byteIdx)) & 0x01;
}

// Construct all possible values of all bytes in the plaintext , given the plaintext class .
void constructInputBytes(uint8_t *stateBytes , uint32_t plaintextClass)
{

for (uint8_t byteIdx = 0; byteIdx < 16; byteIdx ++)
{

// Select w1 and w6 masks
uint8_t w1 = W1.bytes[byteIdx];

51

uint8_t w6 = W6.bytes[byteIdx];

// Extract parity bits for w1 and w6
uint8_t w1p = getW1parity(plaintextClass , byteIdx);
uint8_t w6p = getW6parity(plaintextClass , byteIdx);

// Only select bytes with correct parities
uint64_t parityBitVector = 0;
uint8_t idx = 0;
for (uint16_t pt = 0; pt < 256; pt++)

if (P8(w1 & pt) == w1p && P8(w6 & pt) == w6p)
{

stateBytes [64 * byteIdx + idx] = pt;
idx += 1;

}
}

}

// Compute sample correlation for a given plaintext class under a given key
// Computes sample correlation , scaled up by a factor SAMPLESIZE / 2.
// Computes output balance , scaled up by a factor SAMPLESIZE / 2.
void experiment(Key key , uint32_t plaintextClass ,

int64_t &scaledCorrelation , int64_t &scaledBalance)
{

// Randomizer
pcg64 random(globalRandom () + plaintextClass);

// Compute plaintext bytes for each class
uint8_t stateByteVector [16 * 64];
constructInputBytes(stateByteVector , plaintextClass);

scaledCorrelation = (int64_t)(SAMPLESIZE / 2);
scaledBalance = (int64_t)(SAMPLESIZE / 2);
for (uint64_t t = 0; t < SAMPLESIZE; t++)
{

// Seed random plaintext
Seed plaintextSeed;
plaintextSeed.high = random ();
plaintextSeed.low = random ();

// Generate random state (after subbytes) and compute input parity .
State state;
for (uint8_t i = 0; i < 16; i++)
{

// Select random index in [0, 63]
uint8_t idx = plaintextSeed.bytes[i] & 0x3F;

// Select corresponding byte (after subbyte)
state.bytes[i] = stateByteVector [64 * i + idx];

}

// Compute input parity
uint8_t inputParity = 0;
for (uint8_t i = 0; i < 4; i++)

inputParity += __builtin_parityl(IPM.longs[i] & state.longs[i]);
inputParity &= 1;

// Encrypt state with one round
AddRoundKey(state , key , 0);
SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state , key , 1);

// Compute output parity
uint8_t outputParity = 0;
for (uint8_t i = 0; i < 4; i++)

outputParity += __builtin_parityl(OPM.longs[i] & state.longs[i]);
outputParity &= 1;

// Update correlation
scaledCorrelation -= inputParity ˆ outputParity;
scaledBalance -= outputParity;

}
}

int main()
{

std::cout << "=====␣CONDITIONAL␣EXPERIMENTS␣=====\n";
std::cout << "SETTINGS :\n";
std::cout << "-␣NR␣TRIALS:␣" << NRTRIALS << "\n";
std::cout << "-␣SAMPLESIZE:␣2ˆ" << std::log2(SAMPLESIZE) << "\n\n";

52

for (uint16_t e = 0; e < NREXPERIMENTS; e++)
{

std::cout << " <====␣EXPERIMENT␣" << e << "␣====>\n";

// Generate master key
uint32_t master_key [4];
for (uint16_t i = 0; i < 4; i++)

master_key[i] = globalRandom ();

// Compute correct plaintext class
Key expandedKey;
ExpandKeyTwoRounds(master_key , expandedKey);
std::cout << "master␣key:\n";
for (uint8_t i = 0; i < 4; i++)

printHex(expandedKey.longs[i]);
uint32_t correctPlaintextClass = getCorrectPlaintextClassID(expandedKey);
std::cout << "correct␣plaintext␣class:\n";
printHex(correctPlaintextClass);

// Generate plaintext classes
// Note : first plaintext class is the correct class .
uint32_t classes[NRTRIALS];
classes [0] = correctPlaintextClass;
for (uint16_t c = 1; c < NRTRIALS; c++)

classes[c] = globalRandom ();

std::cout << std::endl;
// Execute experiment
pragma omp parallel for num_threads (8)
for (uint32_t plaintextClass : classes)
{

// Generate encryption key (for each thread)
Key key;
ExpandKeyTwoRounds(master_key , key);

// Run experiment
int64_t scaledCorrelation = 0;
int64_t scaledBalance = 0;
experiment(key , plaintextClass , scaledCorrelation , scaledBalance);

// Compute correlation
double correlation = (double) scaledCorrelation / (SAMPLESIZE / 2);
double corr_exp = std::log2(std::abs(correlation));

// Compute balance
double balance = (double) scaledBalance / (SAMPLESIZE / 2);
double ball_exp = std::log2(std::abs(balance));

// Print result
std::cout << "\n<------------->\n";
std::cout << "plaintext␣class:";
printHex(plaintextClass);
std::cout << "scaled␣correlation:␣" << scaledCorrelation << "\n";
std::cout << "correlation␣mag.:␣␣2ˆ" << corr_exp << "\n";
std::cout << "scaledBalance:␣" << scaledBalance << "\n";
std::cout << "balance␣mag.:␣␣2ˆ" << ball_exp << "\n";
std::cout << "<------------->" << std::endl;

}
std::cout << "\n==========================\n\n";

}
return 0;

}

newToolbox.h
pragma once
include <stdint.h>

union Seed
{

struct
{

uint64_t low;
uint64_t high;

};
uint8_t bytes [16];

};
static_assert(sizeof(Seed) == sizeof(uint8_t) * 16);

union State
{

uint32_t longs [4];
uint8_t bytes [16];

53

};
static_assert(sizeof(State) == sizeof(uint32_t) * 4);

union Key
{

uint32_t longs [8];
uint8_t bytes [32];

};
static_assert(sizeof(Key) == sizeof(uint32_t) * 8);

// Section - Wise (8 bits) CYclic LEft SHift over by one bit .
define sw8cylesh32_1(word) (((word & 0x7F7F7F7F) << 1 ˆ (word & 0x80808080) >> 7))
define sw8cylesh64_1(word) ((word & 0x7F7F7F7F7F7F7F7F) << 1 ˆ (word & 0x8080808080808080) >> 7)

// CYclic LEft SHift uint32_t ’s by X bits
define cylesh32_8(word) (word << 8 ˆ word >> 24)
define cylesh32_16(word) (word << 16 ˆ word >> 16)
define cylesh32_24(word) (word << 24 ˆ word >> 8)

// Usefull tools
uint8_t P8(uint8_t v);
uint32_t SubByteCol(uint32_t c);
void printHex(uint32_t w);

// AES key expansion
void ExpandKeyTwoRounds(const uint32_t* masterKey , Key &key);

// AES encryption steps
void AddRoundKey(State &s, Key k, uint8_t round);
void SubBytes(State &s);
void ShiftRows(State &s);
void MixColumns(State &s);

newToolbox.cpp
include "newToolbox.h"
include <iostream >
include <iomanip >
include <string >

static const uint8_t sbox [256] = {
0x63 , 0x7C , 0x77 , 0x7B , 0xF2 , 0x6B , 0x6F , 0xC5 ,
0x30 , 0x01 , 0x67 , 0x2B , 0xFE , 0xD7 , 0xAB , 0x76 ,
0xCA , 0x82 , 0xC9 , 0x7D , 0xFA , 0x59 , 0x47 , 0xF0 ,
0xAD , 0xD4 , 0xA2 , 0xAF , 0x9C , 0xA4 , 0x72 , 0xC0 ,
0xB7 , 0xFD , 0x93 , 0x26 , 0x36 , 0x3F , 0xF7 , 0xCC ,
0x34 , 0xA5 , 0xE5 , 0xF1 , 0x71 , 0xD8 , 0x31 , 0x15 ,
0x04 , 0xC7 , 0x23 , 0xC3 , 0x18 , 0x96 , 0x05 , 0x9A ,
0x07 , 0x12 , 0x80 , 0xE2 , 0xEB , 0x27 , 0xB2 , 0x75 ,
0x09 , 0x83 , 0x2C , 0x1A , 0x1B , 0x6E , 0x5A , 0xA0 ,
0x52 , 0x3B , 0xD6 , 0xB3 , 0x29 , 0xE3 , 0x2F , 0x84 ,
0x53 , 0xD1 , 0x00 , 0xED , 0x20 , 0xFC , 0xB1 , 0x5B ,
0x6A , 0xCB , 0xBE , 0x39 , 0x4A , 0x4C , 0x58 , 0xCF ,
0xD0 , 0xEF , 0xAA , 0xFB , 0x43 , 0x4D , 0x33 , 0x85 ,
0x45 , 0xF9 , 0x02 , 0x7F , 0x50 , 0x3C , 0x9F , 0xA8 ,
0x51 , 0xA3 , 0x40 , 0x8F , 0x92 , 0x9D , 0x38 , 0xF5 ,
0xBC , 0xB6 , 0xDA , 0x21 , 0x10 , 0xFF , 0xF3 , 0xD2 ,
0xCD , 0x0C , 0x13 , 0xEC , 0x5F , 0x97 , 0x44 , 0x17 ,
0xC4 , 0xA7 , 0x7E , 0x3D , 0x64 , 0x5D , 0x19 , 0x73 ,
0x60 , 0x81 , 0x4F , 0xDC , 0x22 , 0x2A , 0x90 , 0x88 ,
0x46 , 0xEE , 0xB8 , 0x14 , 0xDE , 0x5E , 0x0B , 0xDB ,
0xE0 , 0x32 , 0x3A , 0x0A , 0x49 , 0x06 , 0x24 , 0x5C ,
0xC2 , 0xD3 , 0xAC , 0x62 , 0x91 , 0x95 , 0xE4 , 0x79 ,
0xE7 , 0xC8 , 0x37 , 0x6D , 0x8D , 0xD5 , 0x4E , 0xA9 ,
0x6C , 0x56 , 0xF4 , 0xEA , 0x65 , 0x7A , 0xAE , 0x08 ,
0xBA , 0x78 , 0x25 , 0x2E , 0x1C , 0xA6 , 0xB4 , 0xC6 ,
0xE8 , 0xDD , 0x74 , 0x1F , 0x4B , 0xBD , 0x8B , 0x8A ,
0x70 , 0x3E , 0xB5 , 0x66 , 0x48 , 0x03 , 0xF6 , 0x0E ,
0x61 , 0x35 , 0x57 , 0xB9 , 0x86 , 0xC1 , 0x1D , 0x9E ,
0xE1 , 0xF8 , 0x98 , 0x11 , 0x69 , 0xD9 , 0x8E , 0x94 ,
0x9B , 0x1E , 0x87 , 0xE9 , 0xCE , 0x55 , 0x28 , 0xDF ,
0x8C , 0xA1 , 0x89 , 0x0D , 0xBF , 0xE6 , 0x42 , 0x68 ,
0x41 , 0x99 , 0x2D , 0x0F , 0xB0 , 0x54 , 0xBB , 0x16};

void ExpandKeyTwoRounds(const uint32_t *masterKey , Key &key)
{

for (uint8_t j = 0; j < 4; j++)
key.longs[j] = masterKey[j];

key.longs [4] = key.longs [0] ˆ cylesh32_8(SubByteCol(key.longs [3])) ˆ 0x01;
for (uint8_t c = 5; c < 8; c++)

key.longs[c] = key.longs[c - 4] ˆ key.longs[c - 1];

54

}

void AddRoundKey(State &s, Key key , uint8_t roundIdx)
{

for (uint16_t i = 0; i < 4; i++)
s.longs[i] ˆ= key.longs[4 * roundIdx + i];

}

uint32_t SubByteCol(uint32_t c)
{

uint8_t *cb = (uint8_t *)&c;
for (uint8_t i = 0; i < 4; i++)

cb[i] = sbox[cb[i]];
return c;

}

void SubBytes(State &s)
{

for (uint16_t i = 0; i < 16; i++)
s.bytes[i] = sbox[s.bytes[i]];

}

void ShiftRows(State &s)
{

uint32_t tmp [4];
tmp [0] = (s.bytes [15] << 24) ˆ (s.bytes [10] << 16) ˆ (s.bytes[5] << 8) ˆ s.bytes[0];
tmp [1] = (s.bytes[3] << 24) ˆ (s.bytes [14] << 16) ˆ (s.bytes[9] << 8) ˆ s.bytes[4];
tmp [2] = (s.bytes[7] << 24) ˆ (s.bytes[2] << 16) ˆ (s.bytes [13] << 8) ˆ s.bytes[8];
tmp [3] = (s.bytes [11] << 24) ˆ (s.bytes[6] << 16) ˆ (s.bytes[1] << 8) ˆ s.bytes [12];
for (uint8_t i = 0; i < 4; i++)

s.longs[i] = tmp[i];
}

// Treat all bytes in word as elements in F_ {2ˆ n}
// and multiply with 2, mod 0 x11A .
uint32_t mulp2(uint32_t a)
{

uint32_t x = sw8cylesh32_1(a);
return x ˆ ((x & 0x01010101) * 0x1A);

}

uint32_t MixColumn(uint32_t s)
{

uint32_t tmp = mulp2(s);
tmp ˆ= cylesh32_24(tmp);
tmp ˆ= cylesh32_24(s);
tmp ˆ= cylesh32_16(s);
tmp ˆ= cylesh32_8(s);
return tmp;

}

void MixColumns(State &s)
{

for (uint8_t i = 0; i < 4; i++)
s.longs[i] = MixColumn(s.longs[i]);

}

uint8_t P8(uint8_t v)
{

v ˆ= v >> 4;
v &= 0xF;
return (0x6996 >> v) & 0x1;

}

void printHex(uint32_t val)
{

std::cout << "␣␣0x"
<< std::setw (8)
<< std:: setfill(’0’)
<< std::hex
<< val
<< std::dec
<< "\n";

}

55

	Introduction
	Preliminaries
	Notation
	Cryptographic primitives
	The Advanced Encryption Standard
	History
	Structure
	SubBytes (SB)
	ShiftRows (SR)
	MixColumns (MC)

	Cryptanalysis
	Attack model
	Complexity
	Attack type

	Linear Cryptanalysis
	The goal
	Constructing a linear approximation
	Linear attacks
	Complexity
	Extensions

	Analysis of the inversion function
	Linear Approximations of the inversion function
	Novel approximation methods
	Weighted approximation
	Conditional approximation

	Composition with affine transformations
	Weighted Approximation
	Conditional Approximation

	Application to 4-round AES
	The Wide Trail Strategy
	Constructing the distinguisher
	Strategy
	Linear approximations for the round function
	A 1-round conditional linear trail

	Attacking four-round AES
	Distinguishing attack
	Key-recovery attack

	Experimental validation
	Results

	Conclusion
	Future Work

	Proofs
	Look up table AES s-box
	MDS matrix
	Masks
	Experiment code

