52 research outputs found

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    Optical complex for the study of pulsating aurora with sub-millisecond time resolution on the basis of the Verkhnetulomsky observatory

    No full text
    International audienceA new telescope-spectrometer was installed at Verkhnetulomsky observatory (68?36'N, 31?47'E) to supplement the data from all-sky cameras with measurements of the fine space-time structure of the auroral luminescence. The telescope uses 5 cm ultraviolet (UV) transparent lens as an optical system and a matrix of multi-anode photomultiplier tubes as a photo detector. The angular resolution of the telescope is 1.2? and the temporal resolution is 0.3 ms. The telescope observes a central part (20?) of the all-sky camera field of view (FOV). Description of both optical instruments and results of the first joint measurements are presented

    Tissue distribution of the rat analogue of decay-accelerating factor

    No full text
    In humans, decay-accelerating factor (DAF) is a widely distributed, cell-bound inhibitor of the complement activation enzymes and plays a key role in regulating complement activation, preventing the generation of anaphylotoxins and opsonins, and protecting against complement-mediated lysis. Rodent analogues of DAF have recently been identified, providing a new avenue for the analysis of function. Rat DAF was cloned in our laboratory. Here we describe the generation of monoclonal antibodies (mAbs) against rat DAF, using transfected cells as immunogen, and their use in the analysis of the distribution of DAF in the rat by flow cytometry, Western blot analysis and immunohistochemistry. One of the mAbs was found to block the complement inhibitory function of rat DAF, offering the prospect of neutralization of DAF function in vivo. The antibodies have also been used for purification of DAF from rat erythrocytes by affinity chromatography. Rat DAF purified in this manner was similar in molecular mass to human DAF. The purified protein incorporated into lipid membranes, confirming the presence of a glycolipid anchor, and incorporated protein strongly inhibited the rat C3 convertase. Rat DAF was strongly expressed on endothelia throughout the animal and was also present in most tissues and organs. DAF expression was weak or absent in the brain and on circulating and spleen-resident T cells. Strong DAF expression observed in the kidney was restricted to the glomerulus and Bowman’s capsule. DAF expression in the testis was found only in association with the later stages of spermatogenesis
    • 

    corecore