24 research outputs found

    氷縁に出現する微細藻類群集

    Get PDF
    第6回極域科学シンポジウム[OB] 極域生物圏11月16日(月) 国立極地研究所1階交流アトリウ

    The evolution of self-control

    Get PDF
    This work was supported by the National Evolutionary Synthesis Center (NESCent) through support of a working group led by C.L.N. and B.H. NESCent is supported by the National Science Foundation (NSF) EF-0905606. For training in phylogenetic comparative methods, we thank the AnthroTree Workshop (supported by NSF BCS-0923791). Y.S. thanks the National Natural Science Foundation of China (Project 31170995) and National Basic Research Program (973 Program: 2010CB833904). E.E.B. thanks the Duke Vertical Integration Program and the Duke Undergraduate Research Support Office. J.M.P. was supported by a Newton International Fellowship from the Royal Society and the British Academy. L.R.S. thanks the James S. McDonnell Foundation for Award 220020242. L.J.N.B. and M.L.P. acknowledge the National Institutes of Mental Health (R01-MH096875 and R01-MH089484), a Duke Institute for Brain Sciences Incubator Award (to M.L.P.), and a Duke Center for Interdisciplinary Decision Sciences Fellowship (to L.J.N.B.). E.V. and E.A. thank the Programma Nazionale per la Ricerca–Consiglio Nazionale delle Ricerche (CNR) Aging Program 2012–2014 for financial support, Roma Capitale–Museo Civico di Zoologia and Fondazione Bioparco for hosting the Istituto di Scienze e Tecnologie della Cognizione–CNR Unit of Cognitive Primatology and Primate Centre, and Massimiliano Bianchi and Simone Catarinacci for assistance with capuchin monkeys. K.F. thanks the Japan Society for the Promotion of Science (JSPS) for Grant-in-Aid for Scientific Research 20220004. F. Aureli thanks the Stages in the Evolution and Development of Sign Use project (Contract 012-984 NESTPathfinder) and the Integrating Cooperation Research Across Europe project (Contract 043318), both funded by the European Community’s Sixth Framework Programme (FP6/2002–2006). F. Amici was supported by Humboldt Research Fellowship for Postdoctoral Researchers (Humboldt ID 1138999). L.F.J. and M.M.D. acknowledge NSF Electrical, Communications, and Cyber Systems Grant 1028319 (to L.F.J.) and an NSF Graduate Fellowship (to M.M.D.). C.H. thanks Grant-in-Aid for JSPS Fellows (10J04395). A.T. thanks Research Fellowships of the JSPS for Young Scientists (21264). F.R. and Z.V. acknowledge Austrian Science Fund (FWF) Project P21244-B17, the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement 311870 (to F.R.), Vienna Science and Technology Fund Project CS11-026 (to Z.V.), and many private sponsors, including Royal Canin for financial support and the Game Park Ernstbrunn for hosting the Wolf Science Center. S.M.R. thanks the Natural Sciences and Engineering Research Council (Canada). J.K.Y. thanks the US Department of Agriculture–Wildlife Services–National Wildlife Research Center. J.F.C. thanks the James S. McDonnell Foundation and Alfred P. Sloan Foundation. E.L.M. and B.H. thank the Duke Lemur Center and acknowledge National Institutes of Health Grant 5 R03 HD070649-02 and NSF Grants DGE-1106401, NSF-BCS-27552, and NSF-BCS-25172. This is Publication 1265 of the Duke Lemur Center.Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.PostprintPeer reviewe

    I acknowledge your help: capuchin monkeys' sensitivity to others' labor.

    Get PDF
    Our society is sustained by wide-ranging cooperation. If individuals are sensitive to others' gains and losses as well as the amount of labor, they can ensure future beneficial cooperative interaction. However, it is still an open question whether nonhuman primates are sensitive to others' labor. We asked this question in tufted capuchin monkeys in an experimental food-sharing situation by comparing conditions with labor by two participants equalized (Equal labor condition) or unequalized (Unequal labor condition). The operator monkey pulled the drawer of one of the two food containers placed between two monkeys, each containing a food for him/herself and another for the recipient monkey. The recipient received either high- or low-value food depending on the operator's choice, whereas the operator obtained the same food regardless of his/her choice. In Unequal labor condition, the operator first had to pull the handle of the board to which the containers were glued and then pull the drawer of one of the containers, while the recipient received food with no labor. In Equal labor condition, the recipient had to pull the handle of the board so that the operator could operate a container. Results showed that operators chose the high-value food container for recipients more often than when the recipient was absent only in Equal labor condition. This suggests that capuchin monkeys are sensitive to others' labor and actively give food to a partner who has helped them to complete a task

    Acute toxicity of ammonia and nitrite to Siamese fighting fish (Betta splendens)

    No full text
    Abstract The acute toxicity and sublethal effects of ammonia and nitrite on the air-beathing Siamese fighting fish, betta (Betta splendens) was studied for 96 h. The LC50 (50% Lethal Concentration) for 96 h for adult bettas to ammonia-N and nitrite-N was 123.4 mM (1.7 g/L, 95% confidence limits: 114.7–130.0 mM) and 24.6 mM (343.6 mg/L, 95% confidence limits: 22.7–26.4 mM) respectively. Exposure to 90 mM ammonia did not affect ammonia and urea excretion rates in bettas. There was no significant difference in values between control and ammonia-loaded (90 mM ammonia) individuals in either brain or liver activities of glutamine synthase, while plasma ammonia levels slightly increased. It appears unlikely that ammonia was converted to urea or amino acids for detoxification. Sublethal nitrite (24.6 mM nitrite) affected plasma nitrite, methemoglobin and hemoglobin. Plasma nitrite values remained much lower than ambient concentrations. Betta has a labyrinth organ and can breathe air. Bettas may temporarily reduce the entry of ammonia and nitrite into the body by increasing the rate of air respiration and reducing the contribution of the gill epithelium, which is highly permeable to these nitrogenous pollutants

    Are Horses (Equus caballus) Sensitive to Human Emotional Cues?

    No full text
    Simple Summary It is important for social animals to be sensitive to others' emotional cues, because they can process and react to valuable social and environmental information more efficiently if they can understand others' emotional states. Such sensitivity also seems to be adaptive in animal communication with both conspecific and heterospecific individuals, particularly for dogs and horses, because these animals have been cooperating with humans since the advent of domestication. Previous studies have demonstrated that dogs are very sensitive to human cues, such as pointing and facial or vocal expressions. However, few studies have examined whether horses exhibit a sensitivity to human emotional cues that is comparable to dogs' sensitivity. In this study, we investigated whether horses are sensitive to human emotional cues and adjust their behavior accordingly. The results revealed that human emotional cues influenced the frequency of gaze following and the amount of time that horses looked at humans. Horses avoided following the human gaze and looked in their direction for a shorter period of time when humans displayed expressions of disgust. These findings support our hypothesis that horses exhibit sensitivity to negative human emotional cues. Emotions are important for social animals because animals' emotions function as beneficial cues to identify valuable resources such as food or to avoid danger by providing environmental information. Emotions also enable animals to predict individuals' behavior and determine how to behave in a specific context. Recently, several studies have reported that dogs are highly sensitive to not only conspecific but also human emotional cues. These studies suggest that domestication may have affected such sensitivity. However, there are still few studies that examine whether other domesticated animals, in addition to dogs, exhibit sensitivity to human emotional cues. In this study, we used a gaze-following task to investigate whether horses (Equus caballus) are sensitive to human emotional cues (happy, neutral, disgust) and if they adjust their behavior accordingly. In the study, the experimenter suddenly turned her head to either right or left and showed emotional cues. The results revealed that horses significantly decreased the frequency with which they followed the experimenter's gaze and the total looking time during the gaze-emotional cue presentation in the Disgust condition compared to the Neutral condition. These results suggest the possibility that horses are sensitive to human emotional cues and behave on the basis of the meaning implied by negative human emotional cues

    Effects of oral administration of <i>Euglena gracilis</i> Z and paramylon on cytokine production in collagen-induced arthritis mouse model.

    No full text
    <p>The lymphoid cells were separated from the inguinal lymph nodes and then divided into three portions, which were each incubated in medium supplemented with type-II chicken collagen. The culture supernatant was collected after a 48-h incubation, and the level of the cytokines (interleukin [IL]-17, IL-6, and interferon [IFN]-γ) secreted in the culture supernatant were analyzed (Bio-Plex Pro Mouse Cytokine Th17 Panel A 6-Plex Group I, Bio-Rad Laboratories). Values are means ± standard deviation (SD) of five mice. *p < 0.05 compared to the control using Dunnett’s test.</p
    corecore