134 research outputs found

    3D Periodic-Sugoroku Game for Active Learning of the Periodic Table

    Get PDF
    The periodic table is an important set of scientific sym-bols that are not commonly used in everyday life but which may cause science phobia in youngsters. Many types of educational tools for learning the periodic table do not provide an opportunity to dis-cover the relationships between chemical elements. In this study, we propose a NEO GAME of sugoroku game involving a 3D periodic chart (i.e., periodic-sugoroku) for use as an educational tool. Sugoroku is a Japanese board game similar to Parcheesi or Monopo-ly. Using this proposed tool, students can actively learn the periodic chart while enjoying a sugoroku game

    Chirping and Sudden Excitation of Energetic-Particle-Driven Geodesic Acoustic Modes in a Large Helical Device Experiment

    Get PDF
    Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes

    Simulation of energetic particle driven geodesic acoustic modes and the energy channeling in the Large Helical Device plasmas

    Get PDF
    Energetic particle driven geodesic acoustic modes (EGAMs) in Large Helical Device plasmas are investigated using MEGA code. MEGA is a hybrid simulation code for energetic particles interacting with a magneto-hydrodynamic (MHD) fluid and in the present work, both the energetic particles and bulk ions are described by the kinetic equations. The low frequency EGAMs are reproduced. Also, the energy transfer is analyzed and the bulk ion heating during the EGAM activity is observed. The ions obtain energy when the energetic particleslose energy, and this indicates that an energy channel is established by the EGAM. EGAM channeling is reproduced by simulation with realistic parameters for the first time. The heating power to bulk ions is 3.4 kW m−3. It is found that sideband resonance is dominant during the energy transfer from EGAM to the bulk ions, and the transit frequencies of resonant bulk ions are one-half of the EGAM frequency

    The systematic investigation of energetic-particle-driven geodesic acoustic mode channeling using MEGA code

    Get PDF
    Energetic-particle-driven geodesic acoustic modes (EGAMs) channeling in the Large Helical Device (LHD) plasmas are systematically investigated for the first time using MEGA code. MEGA is a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. In the present work, both the energetic particles and the bulk ions are described kinetically. The EGAM profiles in the three-dimensional form is illustrated. Then, EGAM channeling behaviors are analyzed under different conditions. During the EGAM activities without frequency chirping, EGAM channeling occurs in the linear growthstage but terminates in the decay stage after the saturation. During the EGAM activities with frequency chirping, EGAM channeling occurs continuously. Also, low-frequency EGAM makes the energy transfer efficiency (Eion/EEP) higher, and this is confirmed by changing the energetic particle pressure, energetic particle beam velocity, and energetic particle pitch angle. Moreover, higher bulk ion temperature makes the energy transfer efficiency higher. In addition, under acertain condition, the energy transfer efficiency in the deuterium plasma is lower than that in the hydrogen plasma

    The 7th Asia-Paci c Transport Working Group (APTWG) Meeting

    Get PDF
    This conference report summarizes the contributions to, and discussions at, the 7th Asia-Pacific Transport Working Group Meeting held at Nagoya University, Japan, during 5–8 June 2017. The topics of the meeting were organized under four main headings: (1) turbulence and blob at the boundary of magnetic topology, (2) model reduction and experiments for validation, (3) mode competition in turbulence and MHD driven by energetic particle, (4) mechanism determining plasma flows and their impact on transport and MHD. The Young Researchers Forum which was held in this meeting is also described in this report

    Measurement of electrostatic potential fluctuation using heavy ion beam probe in large helical device

    Get PDF
    Heavy ion beam probe (HIBP) for large helical device (LHD) has been improved to measure the potential fluctuation in high-temperature plasmas. The spatial resolution is improved to about 10 mm by controlling the focus of a probe beam. The HIBP is applied to measure the potential fluctuation in plasmas where the rotational transform is controlled by electron cyclotron current drive. The fluctuations whose frequencies change with the time constant of a few hundreds of milliseconds and that with a constant frequency are observed. The characteristics of the latter fluctuation are similar to those of the geodesic acoustic mode oscillation. The spatial profiles of the fluctuations are also obtained

    Nonlinear Excitation of Subcritical Instabilities in a Toroidal Plasma

    Get PDF
    In a collisionless plasma, it is known that linearly stable modes can be destabilized (subcritically) by the presence of structures in phase space. However, nonlinear growth requires the presence of a seed structure with a relatively large threshold in amplitude. We demonstrate that, in the presence of another, linearly unstable (supercritical) mode, wave-wave coupling can provide a seed, which is significantly below the threshold, but can still grow by (and only by) the collaboration of fluid and kinetic nonlinearities. By modeling the subcritical mode kinetically, and the impact of the supercritical mode by simple wave-wave coupling equations, it is shown that this new kind of subcritical instability can be triggered, even when the frequency of the supercritical mode is rapidly sweeping. The model is applied to the bursty onset of geodesic acoustic modes in a LHD experiment. The model recovers several key features such as relative amplitude, time scales, and phase relations. It suggests that the strongest bursts are subcritical instabilities, driven by this mechanism of combined fluid and kinetic nonlinearities

    亜臨界高速イオン励起モードの非線形励起, 亜臨界高速イオン励起モードの非線形励起

    Get PDF
    In collisionless plasma, it is known that linearly stable modes can be destabilized (subcritically) by the presence of structures in phase-space. The growth of such structures is a nonlinear, kinetic mechanism, which provides a channel for free-energy extraction, different from conventional inverse Landau damping. However, such nonlinear growth requires the presence of a seed structure with a relatively large threshold in amplitude. We demonstrate that, in the presence of another, linearly unstable (supercritical) mode, wave–wave coupling can provide a seed, which can lead to subcritical instability by either one of two mechanisms. Both mechanisms hinge on a collaboration between fluid nonlinearity and kinetic nonlinearity. If collisional velocity diffusion is low enough, the seed provided by the supercritical mode overcomes the threshold for nonlinear growth of phase-space structure. Then, the supercritical mode triggers the conventional subcritical instability. If collisional velocity diffusion is too large, the seed is significantly below the threshold, but can still grow by a sustained collaboration between fluid and kinetic nonlinearities. Both of these subcritical instabilities can be triggered, even when the frequency of the supercritical mode is rapidly sweeping. These results were obtained by modeling the subcritical mode kinetically, and the impact of the supercritical mode by simple wave–wave coupling equations. This model is applied to bursty onset of geodesic acoustic modes in an LHD experiment. The model recovers several key features such as relative amplitude, timescales, and phase relations. It suggests that the strongest bursts are subcritical instabilities, with sustained collaboration between fluid and kinetic nonlinearities

    Impact of a resonant magnetic perturbation field on impurity radiation, divertor footprint, and core plasma transport in attached and detached plasmas in the Large Helical Device

    Get PDF
    The effects of resonant magnetic perturbation (RMP) field on impurity radiation, divertor footprint distribution, and core plasma transport are investigated in the detachment discharges of the Large Helical Device (LHD). The RMP with m/n  =  1/1 mode creates an edge magnetic island in the stochastic layer, which enhances the impurity emission from low charge states, C2+ and C3+, and then triggers a detachment transition. Emission from the higher charge states, C4+ and C5+, implies enhanced penetration of impurities during the detachment phase with RMP. The toroidal divertor particle flux distribution exhibits n  =  1 mode structure in both the attached and detached phases, but with a large toroidal phase shift between the two phases. The distribution in the attached phase is well correlated with the magnetic footprint of field line connection length calculated by the vacuum approximation. During the detached phase, however, the phase shift is not well explained by the vacuum approximation, where a significant plasma response to the external RMP is observed. The energy confinement time becomes systematically shorter with RMP application due to the shrinkage of plasma volume caused by the edge magnetic island. On the other hand, the pressure profile during detachment with RMP is found to be more peaked than without RMP. The analysis using the core transport code TASK3D, considering the heating profiles of neutral beam injection, shows no significant transport degradation during detachment with RMP application, even with the enhanced radiation, reduced divertor flux, and possible impurity penetration

    Present Status in the Development of 6 MeV Heavy Ion Beam Probe on LHD

    Get PDF
    In order to measure the potential in Large Helical Device (LHD), we have been developing a heavy ion beam probe (HIBP). For probing beam, gold beam is used, which is accelerated by a tandem accelerator up to the energy of 6 MeV. The experiments for calibration of beam orbit were done, and experimental results were compared with orbit calculations. The experimental results coincided fairly with the calculation results. After the calibration of the beam orbit, the potential in plasma was tried to measure with the HIBP. The experimental data showed positive potential in a neutral beam heating phase on the condition of ne ? 5 × 10^18 m^-3, and the increase of potential was observed when the additional electron cyclotron heating was applied to this plasma. The time constant for this increase was about a few tens ms, which was larger than a theoretical expectation. In the spatial position of sample volume, we might have an ambiguity in this experiment
    corecore