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Energetic-particle driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device
(LHD) experiment are investigated using a hybrid simulation code for energetic particles interacting
with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the
sudden excitation of the half-frequency secondary mode are reproduced for the first time with the
hybrid simulation using the realistic physical condition and the 3-dimensional equilibrium. Both
EGAMs have global spatial profiles, which are consistent with the experimental measurements. For
the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation
cancel each other out, and thus the frequency is lower than the primary mode. It is found that the
excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary
mode is excited by energetic particles that satisfy both the linear and nonlinear resonance conditions,
respectively, for the primary and the secondary modes.

PACS numbers: 52.35.Fp, 52.55.Hc, 52.65.Ww

Geodesic acoustic mode (GAM) is an oscillatory zonal
flow coupled with density and pressure perturbations
in toroidal plasmas[1–4]. In the last decade, energetic-
particle driven GAMs (EGAMs) were observed in Joint
European Torus (JET)[5, 6], DIII-D[7–9], Large Helical
Device (LHD)[10–14], and ASDEX-Upgrade[15]. In the
DIII-D experiment, drops in neutron emission followed
the EGAM bursts, suggesting beam ion losses[7]. Also,
in the LHD experiment, anomalous bulk ion heating dur-
ing the EGAM activity suggests a GAM channeling[12].
In addition, EGAM can interact with turbulence and af-
fect the plasma confinement[16, 17]. The understanding
of the EGAM thus is important for magnetic confinement
fusion where the energetic particles need to be well con-
fined and the bulk plasma needs to be efficiently heated.
The EGAM has been studied extensively. It was demon-
strated that the poloidal mode number of the EGAM is
m = 0 for potential and m = 1 for density. Also, the
EGAM is a global mode with the spatially uniform oscil-
lation frequency. In addition, the EGAM frequency can
be lower or higher than the conventional GAM frequency
under different conditions[18–21]. The above discussion
has been advanced theoretically, computationally, and
experimentally.

Recently, in LHD an abrupt excitation of a half-
frequency secondary mode was observed when the fre-
quency of a chirping primary EGAM reached twice the
GAM frequency[14]. The secondary mode is important
because of its low frequency. The lower frequency mode
has a lower phase velocity, thus, this mode interacts more
easily with the thermal ions and transfers energy to ions.
As a result, the plasma heating thus becomes easier.
Since the appearance of the secondary mode is related to
the neutral beam injection (NBI), the secondary mode
may create an energy channel between the energetic par-
ticles and the bulk plasmas. A 1-dimensional simulation

with the kinetic energetic particles and a nonlinear cou-
pling coefficient between the primary and the secondary
modes was used to reproduce these two modes[22]. The
authors of Ref. [22] have claimed that the secondary
mode is driven by the cooperative combination of fluid
nonlinearity and kinetic nonlinearity.

MEGA[23–25], a hybrid simulation code for ener-
getic particles interacting with a magnetohydrodynamic
(MHD) fluid, is used for the simulation of EGAMs. In
the MEGA code, the bulk plasma is described by the
nonlinear MHD equations. The drift kinetic description
and the δf particle method are applied to the energetic
particles.

A realistic 3-dimensional equilibrium generated by
HINT code[26] is used for the simulation. This equi-
librium data is based on the LHD shot #109031 at time
t = 4.94 s. At that time, t = 4.94 s, the EGAM activ-
ity is very strong, thus it is appropriate to reproduce the
EGAM phenomenon in a simulation.

In the experiments of LHD, the EGAMs were observed
under the bump-on-tail energetic particle distribution[12,
14]. Thus, in the present work, we implement the simu-
lation with the same type of distribution. For the bump-
on-tail distribution, the charge exchange is considered,
and the velocity distribution is:

f(v) = C(v3 + v3c )
1
3 τs/τcx−1, (1)

which is the same as the Eq.(1) of Ref.[21]. The C is
an integration constant, vc is the critical velocity, τs is
slowing down time, and τcx is charge exchange time. The
shape of the distribution function is controlled by the ra-
tio of τs/τcx. For τcx →∞, the τ ratio is 0 and the distri-
bution function is the typical slowing-down type. With
the increase of τs/τcx, the slowing down becomes insuffi-
cient gradually, and more energetic particles distribute in
the high-energy region and form a bump-on-tail distribu-
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tion. The distribution function of f(v) in the present let-
ter is the same as the experimental observations[13, 14].

In addition, a Gaussian-type pitch angle distribution
g(Λ) is assumed for the energetic ions:

g(Λ) = exp[−(Λ− Λpeak)2/∆Λ2], (2)

where Λpeak represents the pitch angle for the distribu-
tion peak and ∆Λ is a parameter to control the distribu-
tion width.

The parameters for the EGAM simulation are based
on an LHD experiment[14]. Those parameters are B0 =
1.5 T, electron density ne = 0.1 × 1019 m−3, electron
temperature at the magnetic axis Te = 4 keV, and
bulk plasma beta value on the magnetic axis equals to
7.2 × 10−4. The counter-injected neutral beam energy
is ENBI = 175 keV. The safety factor q profile is neg-
ative normal shear with the value 2.82 at the magnetic
axis and 0.84 at the plasma edge. The major radius of
the magnetic axis is R0 = 3.7 m. Cylindrical coordinates
(R,φ, z) are employed. For LHD equilibrium, there are
10 pitches in the toroidal direction. Since the toroidal
mode number of GAM is n = 0, for simplicity, only 1
pitch from φ = 0 to φ = 0.2π is used for the present
simulation, while other pitches from φ = 0.2π to φ = 2π
are obtained by periodic extension. This simplification
is made to save computational resources and time. The
numbers of grid points of this pitch in (R,φ, z) directions
are (128, 64, 128), respectively.

Both the chirping primary mode and the half-
frequency secondary mode are reproduced by the MEGA
code, as shown in Fig. 1. Figure 1(a) shows the poloidal
velocity vθ frequency spectrum including all the fre-
quency components, and Fig. 1(b) shows vθ evolution
including only 50 kHz and 100 kHz components. The
primary mode frequency chirps up in the nonlinear phase
from 70 kHz in the linear growth phase. The mode is sat-
urated at t = 0.07 ms, and then moves into the nonlinear
phase. At t = 1.7 ms, the frequency of the primary
mode reaches to 102 kHz, and a secondary mode with
frequency f = 51 kHz is excited. The amplitudes of the
primary mode and the secondary mode are close to each
other. The simulated phenomenon is very similar to the
experimental observation, as shown in Fig. 2 of Ref. [14].
This is the first simulation that reproduces both the pri-
mary mode and the secondary mode with a 3-dimensional
model and realistic input parameters.

The frequency of the primary mode is two times that
of the secondary mode, and this frequency relation can
be easily confirmed by Lissajous curves. Figure 2 shows
the Lissajous curves between dBθ/dt associated with the
primary and the secondary modes. Panel (a) is plotted
in the growth phase and panel (b) is plotted in the decay
phase of the secondary mode, respectively. The phase
locking is clearly shown in the figure, and indicates a
coupling between the primary mode and the secondary
mode. The Lissajous curves in the present simulation
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FIG. 1. The EGAMs in LHD are reproduced by MEGA code.
Panel (a) shows the poloidal velocity frequency spectrum in-
cluding all the frequency components, and panel (b) shows the
poloidal velocity time evolution including only 50 kHz (red)
and 100 kHz (green). Panels (c) and (d) are similar to (a) and
(b), but the MHD equations are linearized from t = 1.253 ms.

are consistent with the experiments, as shown in Fig. 5
of Ref. [14].

The mode profiles of poloidal velocity vθ and bulk pres-
sure perturbation δPbulk are plotted in 3-dimensional fig-
ures, as shown in Fig. 3. The five slices in each panel
represent five poloidal cross-sections, and their toroidal
positions are from φ = 0 to φ = 0.4π with toroidal
interval of 0.1π. For vθ, the red color represents posi-
tive value. In other words, the red color represents the
counter-clockwise rotation in poloidal direction, while the
blue color represents the clockwise rotation. For δPbulk,
the red color represents positive perturbation while the
blue color represents negative perturbation. Figure 3
shows that the dominant components of vθ and δPbulk
are m/n = 0/0 and 1/0, respectively. Also, further anal-
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FIG. 2. Lissajous curves between dBθ/dt values associated
with the primary and the secondary modes. Panel (a) repre-
sents the time evolution of the secondary mode, while panels
(b) and (c) correspond to the Lissajous curves in the growth
phase (red) and the decay phase (blue), respectively.

yses show that both the primary mode and the secondary
mode are global. The mode number and the mode struc-
ture are consistent with the experiment, as shown in
Fig. 4 of Ref. [14].

The poloidal velocity vθ is a combination of m/n = 0/0
(strong), 1/0 (medium), and 2/10 (weak) components.
The m/n = 2/10 component exists due to the LHD con-
figuration, because in LHD there are ten pitches in the
toroidal direction and there are two high field regions and
two low field regions in the poloidal direction. This is
the first simulation of EGAM in the 3-dimensional LHD
configuration. The mode number is different from the
tokamak case where the vθ oscillation is a combination
of m/n = 0/0 and 1/0 components.

FIG. 3. The mode profiles of (a) vθ and (b) δPbulk in the
3-dimensional form.

The secondary mode is identified as an EGAM in the
present work for three reasons. First, the poloidal mode
number is m = 0 for poloidal velocity and m = 1
for pressure perturbation. This is the feature of the
EGAM and the conventional GAM. Second, the mode

frequency is almost the same as the conventional GAM
frequency. According to the theoretical prediction, un-
der the present simulation conditions, the conventional
GAM frequency should be 50.1 kHz. The simulated fre-
quency of the secondary mode is 51 ± 1.5 kHz. And
third, the secondary mode is global. The EGAM is global
while the conventional GAM is local. This is one of
the differences between the EGAM and the conventional
GAM[7, 15, 18, 20]. The global structure is caused by
the large energetic particle orbit width[8, 9, 15, 18, 20].
The coupling strength between energetic particles and
conventional GAM changes by bulk plasma temperature
and GAM continuum, and thus, the mode structure can
also be affected by bulk plasma[4, 15, 19]. Based on
the three properties discussed above, we conclude that
the simulated secondary mode is an EGAM. A question
may arise regarding why the primary EGAM and the
secondary EGAM have different frequencies. In order to
clarify the reason, the bulk plasma pressure perturbation
δPbulk and the energetic particle pressure perturbation
δPh‖ are analyzed, as shown in Fig. 4. The most domi-
nant component of δPbulk and δPh‖ is m/n = 1/0 sine.
For simplicity, only this dominant component 1/0 sine
is shown in Fig. 4. For the primary mode, the phase of
δPbulk and δPh‖ are the same, and they enhance each
other. The primary mode is driven by both δPbulk and
δPh‖. For the secondary mode, the phase difference be-
tween δPbulk and δPh‖ is π. In other words, they are in
anti-phase, and they cancel each other out. Thus, the
frequency of the secondary mode is much lower than the
primary mode. The phase of δPh⊥ is the same as δPh‖,
but the absolute value of δPh⊥ is much smaller. Thus
δPh⊥ is not shown in the figure.

In Ref. [22], the authors claimed that both the fluid
nonlinearity and the kinetic nonlinearity are important
for the secondary mode excitation. In order to clarify
the importance of the fluid nonlinearity, a special lin-
earized MHD model is applied in the present letter. The
linear MHD equations are the same as those in Ref. [23].
In the present work, simulations are performed in two
stages. In the first stage, the nonlinear code is run until
time t = 1.253 ms when the EGAM is completely satu-
rated but the secondary mode has not yet been excited.
Then, in the second stage, both the linear and the non-
linear MHD codes are run separately from the end of the
run of the first stage. In the second stage, the secondary
mode appears in both runs. In other words, the sec-
ondary mode can be excited even if the MHD equations
are linearized. In the linearized MHD run, the appear-
ance of the secondary mode is delayed, but the amplitude
is almost the same. This result is different from that in
Ref. [22]. In the present work, the excitation of the sec-
ondary mode is only caused by the kinetic nonlinearity,
while the fluid nonlinearity hardly affects the amplitude
of the secondary mode.

In order to determine the reason why the frequency
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FIG. 4. The δPbulk oscillation and the δPh‖ oscillation of (a)
primary mode and (b) secondary mode.

relation between primary mode and secondary mode
is exactly double that which is shown in Fig. 2, and
also to further confirm the role of the kinetic nonlin-
earity, the energy transfer versus transit frequencies of
resonant particles are plotted in Fig. 5. Three lines
correspond to different phases of the secondary mode:
before the excitation, during the growth, and at the
time of the beginning of decay at maximum ampli-
tude. The poloidal transit frequency is defined by ftr =√

(1− Λ)(2E/mEP )/(2πqR0), where mEP is the ener-
getic particle mass. The negative dE/dt indicates that
the energetic particles lose energy, and the energy is
transferred to the mode, and thus the mode is desta-
bilized. We see in the figure that the energy trans-
fer is strong when the secondary mode is growing at
t = 1.75 ms. This indicates that the energy trans-
fer from the particles with ftr ≈ 100 kHz excited the
secondary mode with f ≈ 50 kHz. This interaction
may be the nonlinear resonance. For the linear res-
onance, the phase of the wave is the same when the
particle passes each time around the poloidal angle[27],
while the phase is the same when the particle passes
K (K > 1) times around the poloidal angle for the
nonlinear resonance. The nonlinear resonance is neg-
ligible for the linear stability analysis, but may trans-
fer substantial energy for finite-amplitude waves. Non-
linear resonance is also called higher-order resonance or
fractional resonance, and is commonly known[28]. Frac-
tional resonances were demonstrated experimentally and
computationally for EGAMs[8, 21]. For the excitation
of the secondary mode shown in Fig. 1, the particles

with ftr ≈ 100 kHz satisfy the linear resonance condi-
tion for the primary mode with f ≈ 100 kHz and the
nonlinear resonance condition for the secondary mode
with f ≈ 50 kHz and K = 2. These resonant particles
may transfer energy from the primary mode to the sec-
ondary mode, which can be inferred from the decay of
the primary mode when the secondary mode is excited.
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FIG. 5. The energy transfer versus transit frequencies of res-
onant particles at 1.60 ms, 1.75 ms, and 1.81 ms.

In summary, three conclusions are presented in this
work. First, the simulation of EGAM in the realistic 3-
dimensional equilibrium is obtained for the first time, and
the results are very similar to the experimental observa-
tion. It is found that the poloidal velocity oscillation is
a combination of m/n = 0/0 (strong), 1/0 (medium),
and 2/10 (weak) components. This is caused by the
LHD configuration, and is different from the tokamak
case. Second, the chirping EGAM and the associated
half-frequency secondary mode are reproduced with the
3-dimensional model and realistic parameters for the first
time. The results are good validations of the simula-
tion. It is found that the phase difference between δPbulk
and δPh‖ is π for the secondary mode. The δPbulk and
δPh‖ are in anti-phase, and they cancel each other out.
Thus, the frequency of the secondary mode is much lower
than the primary mode. And third, it is found that the
fluid nonlinearity does not affect the excitation of the
secondary mode, and the secondary mode is excited by
the energetic particles that can resonate with both the
primary and the secondary modes. This conclusion is
confirmed by the linearized MHD run and by the analy-
sis of the energy transfer from energetic particles to the
mode. Our conclusion is different from that of Ref.[22].
However, we would like to emphasize that our simulations
are based on the fundamental physics equations with the
realistic condition.

We have found that the secondary mode is excited by
energetic particles that satisfy both the linear and non-
linear resonance conditions for the primary and the sec-
ondary modes, respectively. The overlap of linear and
nonlinear resonances is brought about by the sponta-
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neous frequency chirping of the primary mode, and leads
to the emergence of stochasticity and the sudden excita-
tion of the secondary mode. The overlap of linear and
nonlinear resonances can be ubiquitous in fusion plas-
mas and important for plasma confinement and energy
channeling.
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