321 research outputs found

    A novel Rac1-GSPT1 signaling pathway controls astrogliosis following central nervous system injury

    Get PDF
    Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a novel candidate for therapeutic intervention following CNS injury. For these studies, we generated mice with Rac1 deletion under the control of the GFAP (glial fibrillary acidic protein) promoter (GFAP-Cre;Rac1(flox/flox)). GFAP-Cre;Rac1(flox/flox) (Rac1-KO) mice exhibited better recovery after spinal cord injury and exhibited reduced astrogliosis at the lesion site relative to control. Reduced astrogliosis was also observed in Rac1-KO mice following microbeam irradiation-induced injury. Moreover, knockdown (KD) or KO of Rac1 in astrocytes (LN229 cells, primary astrocytes, or primary astrocytes from Rac1-KO mice) led to delayed cell cycle progression and reduced cell migration. Rac1-KD or Rac1-KO astrocytes additionally had decreased levels of GSPT1 (G(1) to S phase transition 1) expression and reduced responses of IL-1Ξ² and GSPT1 to LPS treatment, indicating that IL-1Ξ² and GSPT1 are downstream molecules of Rac1 associated with inflammatory condition. Furthermore, GSPT1-KD astrocytes had cell cycle delay, with no effect on cell migration. The cell cycle delay induced by Rac1-KD was rescued by overexpression of GSPT1. Based on these results, we propose that Rac1-GSPT1 represents a novel signaling axis in astrocytes that accelerates proliferation in response to inflammation, which is one important factor in the development of astrogliosis/glial scar following CNS injury

    Tropical Rainfall Measurement Mission (TRMM) Operation Summary

    Get PDF
    The Tropical Rainfall Measurement Mission (TRMM) is a joint U.S. and Japan mission to observe tropical rainfall, which was launched by H-II No. 6 from Tanegashima in Japan at 6:27 JST on November 28, 1997. After the two-month commissioning of TRMM satellite and instruments, the original nominal mission lifetime was three years. In fact, the operations has continued for approximately 17.5 years. This paper provides a summary of the long term operations of TRMM

    BCAA catabolism in brown fat controls energy homeostasis through SLC25A44.

    Get PDF
    Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health

    Monozygotic multiple gestation following in vitro fertilization: analysis of seven cases from Japan

    Get PDF
    We present a series of monozygous multiple gestations achieved following in vitro fertilization (IVF): one case of monochorionic triplet pregnancy and six cases of dizygotic triplet pregnancy. From September 2000 to December 2006, all patients achieving clinical pregnancy by ART were reviewed (n = 2433). A 37 year-old woman who delivered a healthy singleton after IVF returned two years later for FET, and a single blastocyst was transferred. This also resulted in pregnancy, but TV-USG revealed a single gestational sac with three distinct amniotic sacs, each containing a distinct fetal pole with cardiac activity. This pregnancy was electively terminated at nine weeks' gestation. An additional six cases of dizygotic triplets established after fresh embryo transfer (no ICSI or assisted hatching) are also described. Of these, one resulted in a miscarriage at eight weeks' gestation and five patients have an ongoing pregnancy. This case series suggests the incidence of dizygotic/monochorionic triplets following IVF is approximately 10 times higher than the expected rate in unassisted conceptions, and underscores the importance of a conservative approach to lower the number of embryos at transfer. The role of embryo transfer technique and in vitro culture media in the twinning process requires further study

    Structure-based classification of tauopathies

    Get PDF
    Ordered assembly of tau protein into filaments characterizes multiple neurodegenerative diseases, which are called tauopathies. We previously reported that by electron cryo-microscopy (cryo-EM), tau filament structures from Alzheimer’s disease (1,2), Pick’s disease (3), chronic traumatic encephalopathy (CTE) (4) and corticobasal degeneration (CBD) (5) are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a novel three-layered fold. Moreover, the tau filament structures from globular glial tauopathy (GGT) are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs from the above and resembles the four-layered CBD fold. The AGD fold is also observed in aging-related tau astrogliopathy (ARTAG). Tau protofilament structures from inherited cases with mutations +3 or +16 in intron 10 of MAPT, the microtubule-associated protein tau gene, are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, tau filament structures from cases of familial British dementia (FBD) and familial Danish dementia (FDD) are the same as those from Alzheimer’s disease and primary age-related tauopathy (PART). These findings suggest a hierarchical classification of tauopathies based on their filament folds, which complements clinical diagnosis and neuropathology, and allows identification of new entities, as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of GGT and PSP

    A Quantitative Image Cytometry Technique for Time Series or Population Analyses of Signaling Networks

    Get PDF
    Background: Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. Methodology/Principal Findings: We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. Conclusions/Significance: The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging

    Development of a Multi-Step Leukemogenesis Model of MLL-Rearranged Leukemia Using Humanized Mice

    Get PDF
    Mixed-lineage-leukemia (MLL) fusion oncogenes are intimately involved in acute leukemia and secondary therapy-related acute leukemia. To understand MLL-rearranged leukemia, several murine models for this disease have been established. However, the mouse leukemia derived from mouse hematopoietic stem cells (HSCs) may not be fully comparable with human leukemia. Here we developed a humanized mouse model for human leukemia by transplanting human cord blood-derived HSCs transduced with an MLL-AF10 oncogene into a supra-immunodeficient mouse strain, NOD/Shi-scid, IL-2RΞ³βˆ’/βˆ’ (NOG) mice. Injection of the MLL-AF10-transduced HSCs into the liver of NOG mice enhanced multilineage hematopoiesis, but did not induce leukemia. Because active mutations in ras genes are often found in MLL-related leukemia, we next transduced the gene for a constitutively active form of K-ras along with the MLL-AF10 oncogene. Eight weeks after transplantation, all the recipient mice had developed acute monoblastic leukemia (the M5 phenotype in French-American-British classification). We thus successfully established a human MLL-rearranged leukemia that was derived in vivo from human HSCs. In addition, since the enforced expression of the mutant K-ras alone was insufficient to induce leukemia, the present model may also be a useful experimental platform for the multi-step leukemogenesis model of human leukemia

    Human Sclera Maintains Common Characteristics with Cartilage throughout Evolution

    Get PDF
    BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia
    • …
    corecore