270 research outputs found

    Discovery of a Small-Molecule-Dependent Photolytic Peptide

    Get PDF
    We accidentally found that YM-53601, a known small-molecule inhibitor of squalene synthase (SQS), selectively depletes SQS from mammalian cells upon UV irradiation. Further analyses indicated that the photodepletion of SQS requires its short peptide segment located at the COOH terminus. Remarkably, when the 27 amino acid peptide was fused to green fluorescent protein or unrelated proteins at either the NH2 or COOH terminus, such fusion proteins were selectively depleted when the cells were treated with both YM-53601 and UV exposure. Product analysis and electron spin resonance experiments suggested that the UV irradiation promotes homolytic C-O bond cleavage of the aryl ether group in YM-53601. It is likely that the radical species generated from UV-activated YM-53601 abstract hydrogen atoms from the SQS peptide, leading to the photolysis of the entire protein. The pair of the SQS peptide and YM-53601 discovered in the present study paves the way for the design of a new small-molecule-controlled optogenetic tool

    Non-genetic cell-surface modification with a self-assembling molecular glue

    Get PDF
    A versatile non-genetic cell-surface modification method, in which a self-assembling small molecule is combined with Halo-tag proteins, permitted the sell functionalization

    Iodine-125 Seed Implantation (Permanent Brachytherapy) for Clinically Localized Prostate Cancer

    Get PDF
    From January 2004 to March 2007, 308 patients with clinically localized prostate cancer were treated using iodine-125 (125I) seed implantation (permanent brachytherapy) at Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences. We evaluated the treatment’s effi cacy and morbidity in 300 prostate cancer patients who were followed up for more than 1 month after brachytherapy. Based on the National Comprehensive Cancer Network (NCCN) guidelines, patients with a prostate volume of less than 40 ml in transrectal ultrasound imaging were classifi ed as low or intermediate risk. The median patient age was 67 years (range 50 to 79 years), the median prostate-specific antigen (PSA) value before biopsy was 6.95 ng/ml (range 1.13 to 24.7 ng/ml), and the median prostate volume was 24.33 ml (range 9.3 to 41.76 ml). The median follow-up was 18 months (range 1 to 36 months) and the PSA levels decreased in almost all patients after brachytherapy. Although 194 of 300 patients (64.7%) complained of diffi culty in urination, pollakisuria/urgency, miction pain, and/or urinary incontinence, all of which might be associated with radiation prostatitis during the fi rst month after brachytherapy, these symptoms gradually improved. 125I seed implantation brachytherapy is safe and eff ective for localized prostate cancer within short-term follow up.</p

    IKs Block and Spiral-Wave Reentry

    Get PDF
    We tested a hypothesis that an enhancement of IKs may play a pivotal role in ventricular proarrhythmia under high sympathetic activity. A 2-dimensional ventricular muscle layer was prepared in rabbit hearts, and action potential signals were analyzed by optical mapping. During constant stimulation, isoproterenol (ISP, 0.1 μM) significantly shortened action potential duration (APD); chromanol 293B (30 μM), a selective IKs-blocker, reversed the APD shortening. VTs induced in the presence of ISP lasted longer than in the control, and this was reversed by 293B. E-4031 (0.1 μM), a selective IKr-blocker, did not cause such reversal. Spiral-wave (SW) reentry with ISP was characterized by more stable rotation around a shorter functional block line (FBL) than in the control. After application of 293B, SW reentry was destabilized, and rotation around a longer FBL with prominent drift reappeared. The APD abbreviation by ISP close to the rotation center was more pronounced than in the periphery, leading to an opposite APD gradient (center < periphery) compared with controls. This effect was also reversed by 293B. In conclusion, β-adrenergic stimulation stabilizes SW reentry most likely though an enhancement of IKs. Blockade of IKs may be a promising therapeutic modality in prevention of ventricular tachyarrhythmias under high sympathetic activity

    Pectenotoxin-2 from Marine Sponges: A Potential Anti-Cancer Agent—A Review

    Get PDF
    Pectenotoxin-2 (PTX-2), which was first identified as a cytotoxic entity in marine sponges, has been reported to display significant cytotoxicity to human cancer cells where it inhibits mitotic separation and cytokinesis through the depolymerization of actin filaments. In the late stage of endoreduplication, the effects of PTX-2 on different cancer cells involves: (i) down-regulation of anti-apoptotic Bcl-2 members and IAP family proteins; (ii) up-regulation of pro-apoptotic Bax protein and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-receptor 1/receptor 2 (DR4/DR5); and (iii) mitochondrial dysfunction. In addition, PTX-2 induces apoptotic effects through suppression of the nuclear factor κB (NF-κB) signaling pathway in several cancer cells. Analysis of cell cycle regulatory proteins showed that PTX-2 increases phosphorylation of Cdc25c and decreases protein levels of Cdc2 and cyclin B1. Cyclin-dependent kinase (Cdk) inhibitor p21 and Cdk2, which are associated with the induction of endoreduplication, were upregulated. Furthermore, it was found that PTX-2 suppressed telomerase activity through the transcriptional and post-translational suppression of hTERT. The purpose of this review was to provide an update regarding the anti-cancer mechanism of PTX-2, with a special focus on its effects on different cellular signaling cascades

    Differential RNA-binding activity of the hnRNP G protein correlated with the sex genotype in the amphibian oocyte

    Get PDF
    A proteomic approach has enabled the identification of an orthologue of the splicing factor hnRNP G in the amphibians Xenopus tropicalis, Ambystoma mexicanum, Notophthalmus viridescens and Pleurodeles walt, which shows a specific RNA-binding affinity similar to that of the human hnRN G protein. Three isoforms of this protein with a differential binding affinity for a specific RNA probe were identified in the P. walt oocyte. In situ hybridization to lampbrush chromosomes of P. waltl revealed the presence of a family of hnRNP G genes, which were mapped on the Z and W chromosomes and one autosome. This indicates that the isoforms identified in this study are possibly encoded by a gene family linked to the evolution of sex chromosomes similarly to the hnRNP G/RBMX gene family in mammals

    Relationship between the expansion of drylands and the intensification of Hadley circulation during the late twentieth century

    Get PDF
    The changes in coverage by arid climate and intensity of the Hadley circulation during the second half of the twentieth century were examined using observations and the multi-model ensemble (MME) mean of Twentieth-Century Coupled Climate Model (20C3M) simulations. It was found that the area of dry climate, which comprises steppe and desert climates following the K&#246;ppen climate classification, expanded to an appreciable extent in observation and, to a lesser degree, in MME simulation. The areal extent of steppe climate (the outer boundary of arid climate) tends to encroach on the surrounding climate groups, which, in turn, feeds desert climate (the inner part of arid climate) and causes it to grow. This result indicates the importance of accurate prediction for climate regimes that border steppe climate. Concomitant with the expansion of drylands, the observed intensity of the Hadley cell is persistently enhanced, particularly during boreal winter, suggesting the validity of a self-induction of deserts through a positive biogeophysical feedback (also known as Charney’s cycle). In comparison, the simulated Hadley circulation in the MME mean remains invariant in time. The current climate models, therefore, disagree with the observation in the long-term linkage between desertification and Hadley cell. Finally, the implication of such discrepancy is discussed as a possible guidance to improve models

    Clinical Usefulness of Multiplex PCR Lateral Flow in MRSA Detection: A Novel, Rapid Genetic Testing Method

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) with exogenous cassette DNA containing the methicillin-resistant gene mecA (SCCmec) poses a problem as a drug-resistant bacterium responsible for hospital- and community-acquired infections. The frequency of MRSA detection has recently been increasing rapidly in Japan, and SCCmec has also been classified more diversely into types I–V. A rapid test is essential for early diagnosis and treatment of MRSA infections, but detection by conventional methods requires at least two days. The newly developed multiplex PCR lateral flow method allows specific amplification of femA to detect S. aureus, mecA to detect SCCmec, and kdpC to detect SCCmec type II; moreover, PCR products can be evaluated visually in about 3 h. In the present study, we developed a PCR lateral flow method for MRSA using this method and investigated its clinical usefulness in the detection of MRSA. The results showed a diagnostic concordance rate of 91.7% for MRSA and methicillin-susceptible S. aureus between bacteriological examination and PCR lateral flow, and a high level of specificity in PCR lateral flow. In addition, a higher detection rate for S. aureus using the same sample was observed for PCR lateral flow (70.2%) than for bacteriological tests (48.6%). The above results show that PCR lateral flow for MRSA detection has high sensitivity, specificity, and speed, and its clinical application as a method for early diagnosis of MRSA infections appears to be feasible
    corecore