10 research outputs found

    Accomplishments of the MUSICA project to provide accurate, long-term, global and high-resolution observations of tropospheric {H₂O, ήD} pairs - A review

    Get PDF
    In the lower/middle troposphere, {H2O,ήD} pairs are good proxies for moisture pathways; however, their observation, in particular when using remote sensing techniques, is challenging. The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) addresses this challenge by integrating the remote sensing with in situ measurement techniques. The aim is to retrieve calibrated tropospheric {H2O,ήD} pairs from the middle infrared spectra measured from ground by FTIR (Fourier transform infrared) spectrometers of the NDACC (Network for the Detection of Atmospheric Composition Change) and the thermal nadir spectra measured by IASI (Infrared Atmospheric Sounding Interferometer) aboard the MetOp satellites. In this paper, we present the final MUSICA products, and discuss the characteristics and potential of the NDACC/FTIR and MetOp/IASI {H2O,ήD} data pairs. First, we briefly resume the particularities of an {H2O,ήD} pair retrieval. Second, we show that the remote sensing data of the final product version are absolutely calibrated with respect to H2O and ήD in situ profile references measured in the subtropics, between 0 and 7 km. Third, we reveal that the {H2O,ήD} pair distributions obtained from the different remote sensors are consistent and allow distinct lower/middle tropospheric moisture pathways to be identified in agreement with multi-year in situ references. Fourth, we document the possibilities of the NDACC/FTIR instruments for climatological studies (due to long-term monitoring) and of the MetOp/IASI sensors for observing diurnal signals on a quasi-global scale and with high horizontal resolution. Fifth, we discuss the risk of misinterpreting {H2O,ήD} pair distributions due to incomplete processing of the remote sensing products

    Tropospheric water vapour isotopologue data (H₂Âč⁶O, H₂Âč⁞O, and HDÂč⁶O) as obtained from NDACC/FTIR solar absorption spectra

    Get PDF
    We report on the ground-based FTIR (Fourier transform infrared) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the Detection of Atmospheric Composition Change; ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/) and via doi:10.5281/zenodo.48902. Currently, data are available for 12 globally distributed stations. They have been centrally retrieved and quality-filtered in the framework of the MUSICA project (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water). We explain particularities of retrieving the water vapour isotopologue state (vertical distribution of H216O, H218O, and HD16O) and reveal the need for a new metadata template for archiving FTIR isotopologue data. We describe the format of different data components and give recommendations for correct data usage. Data are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies disregarding different isotopologues (comparison with radiosonde data, analyses of water vapour variability and trends, etc.). The second type is needed for analysing moisture pathways by means of H2O, ήD-pair distributions

    Comparison of Regional Simulation of Biospheric CO2 Flux from the Updated Version of CarbonTracker Asia with FLUXCOM and Other Inversions over Asia

    No full text
    There are still large uncertainties in the estimates of net ecosystem exchange of CO2 (NEE) with atmosphere in Asia, particularly in the boreal and eastern part of temperate Asia. To understand these uncertainties, we assessed the CarbonTracker Asia (CTA2017) estimates of the spatial and temporal distributions of NEE through a comparison with FLUXCOM and the global inversion models from the Copernicus Atmospheric Monitoring Service (CAMS), Monitoring Atmospheric Composition and Climate (MACC), and Jena CarboScope in Asia, as well as examining the impact of the nesting approach on the optimized NEE flux during the 2001–2013 period. The long-term mean carbon uptake is reduced in Asia, which is −0.32 ± 0.22 PgC yr−1, whereas −0.58 ± 0.26 PgC yr−1 is shown from CT2017 (CarbonTracker global). The domain aggregated mean carbon uptake from CTA2017 is found to be lower by 23.8%, 44.8%, and 60.5% than CAMS, MACC, and Jena CarboScope, respectively. For example, both CTA2017 and CT2017 models captured the interannual variability (IAV) of the NEE flux with a different magnitude and this leads to divergent annual aggregated results. Differences in the estimated interannual variability of NEE in response to El Niño–Southern Oscillation (ENSO) may result from differences in the transport model resolutions. These inverse models’ results have a substantial difference compared to FLUXCOM, which was found to be −5.54 PgC yr−1. On the one hand, we showed that the large NEE discrepancies between both inversion models and FLUXCOM stem mostly from the tropical forests. On the other hand, CTA2017 exhibits a slightly better correlation with FLUXCOM over grass/shrub, fields/woods/savanna, and mixed forest than CT2017. The land cover inconsistency between CTA2017 and FLUXCOM is therefore one driver of the discrepancy in the NEE estimates. The diurnal averaged NEE flux between CTA2017 and FLUXCOM exhibits better agreement during the carbon uptake period than the carbon release period. Both CTA2017 and CT2017 revealed that the overall spatial patterns of the carbon sink and source are similar, but the magnitude varied with seasons and ecosystem types, which is mainly attributed to differences in the transport model resolutions. Our findings indicate that substantial inconsistencies in the inversions and FLUXCOM mainly emerge during the carbon uptake period and over tropical forests. The main problems are underrepresentation of FLUXCOM NEE estimates by limited eddy covariance flux measurements, the role of CO2 emissions from land use change not accounted for by FLUXCOM, sparseness of surface observations of CO2 concentrations used by the assimilation systems, and land cover inconsistency. This suggested that further scrutiny on the FLUXCOM and inverse estimates is most likely required. Such efforts will reduce inconsistencies across various NEE estimates over Asia, thus mitigating ecosystem-driven errors that propagate the global carbon budget. Moreover, this work also recommends further investigation on how the changes/updates made in CarbonTracker affect the interannual variability of the aggregate and spatial pattern of NEE flux in response to the ENSO effect over the region of interest

    Interannual Variability of Atmospheric CH4 and Its Driver Over South Korea Captured by Integrated Data in 2019

    No full text
    Understanding the temporal variability of atmospheric methane (CH4) and its potential drivers can advance the progress toward mitigating changes to the climate. To comprehend interannual variability and spatial characteristics of anomalous CH4 mole fractions and its drivers, we used integrated data from different platforms such as in situ measurements and satellites (TROPOspheric Monitoring Instrument (TROPOMI) and Greenhouse Gases Observing SATellite (GOSAT)) retrievals. A pronounced change of annual growth rate was detected at Anmyeondo (AMY), Republic of Korea, ranging from −16.8 to 31.3 ppb yr−1 as captured in situ through 2015–2020 and 3.9 to 16.4 ppb yr−1 detected by GOSAT through 2014–2019, respectively. High growth rates were discerned in 2016 (31.3 ppb yr−1 and 13.4 ppb yr−1 from in situ and GOSAT, respectively) and 2019 (27.4 ppb yr−1 and 16.4 ppb yr−1 from in situ and GOSAT, respectively). The high growth in 2016 was essentially explained by the strong El Niño event in 2015–2016, whereas the large growth rate in 2019 was not related to ENSO. We suggest that the growth rate that appeared in 2019 was related to soil temperature according to the Noah Land Surface Model. The stable isotopic composition of 13C/12C in CH4 (ÎŽ13-CH4) collected by flask-air sampling at AMY during 2014–2019 supported the soil methane hypothesis. The intercept of the Keeling plot for summer and autumn were found to be −53.3‰ and −52.9‰, respectively, which suggested isotopic signature of biogenic emissions. The isotopic values in 2019 exhibited the strongest depletion compared to other periods, which suggests even a stronger biogenic signal. Such changes in the biogenic signal were affected by the variations of soil temperature and soil moisture. We looked more closely at the variability of XCH4 and the relationship with soil properties. The result indicated a spatial distribution of interannual variability, as well as the captured elevated anomaly over the southwest of the domain in autumn 2019, up to 70 ppb, which was largely explained by the combined effect of soil temperature and soil moisture changes, indicating a pixel-wise correlation of XCH4 anomaly with those parameters in the range of 0.5–0.8 with a statistical significance (p < 0.05). This implies that the soil-associated drivers are able to exert a large-scale influence on the regional distribution of CH4 in Korea

    Towards Robust Calculation of Interannual CO2 Growth Signal from TCCON (Total Carbon Column Observing Network)

    No full text
    The CO2 growth rate is one of the key geophysical quantities reflecting the dynamics of climate change as atmospheric CO2 growth is the primary driver of global warming. As recent studies have shown that TCCON (Total Carbon Column Observing Network) measurement footprints embrace quasi-global coverage, we examined the sensitivity of TCCON to the global CO2 growth. To this end, we used the aggregated TCCON observations (2006-2019) to retrieve Annual Growth Rate of CO2 (AGR) at global scales. The global AGR estimates from TCCON (AGRTCCON) are robust and independent, from (a) the station-wise seasonality, from (b) the differences in time series across the TCCON stations, and from (c) the type of TCCON stations used in the calculation (“background” or “contaminated” by neighboring CO2 sources). The AGRTCCON potential error, due to the irregular data sampling is relatively low (2.4–17.9%). In 2006–2019, global AGRTCCON ranged from the minimum of 1.59 ± 2.27 ppm (2009) to the maximum of 3.27 ± 0.82 ppm (2016), whereas the uncertainties express sub-annual variability and the data gap effects. The global AGRTCCON magnitude is similar to the reference AGR from satellite data (AGRSAT = 1.57–2.94 ppm) and the surface-based estimates of Global Carbon Budget (AGRGCB = 1.57–2.85). The highest global CO2 growth rate (2015/2016), caused by the record El Niño, was nearly perfectly reproduced by the TCCON (AGRTCCON = 3.27 ± 0.82 ppm vs. AGRSAT = 3.23 ± 0.50 ppm). The overall agreement between global AGRTCCON with the AGR references was yet weakened (r = 0.37 for TCCON vs. SAT; r = 0.50 for TCCON vs. GCB) due to two years (2008, 2015). We identified the drivers of this disagreement; in 2008, when only few stations were available worldwide, the AGRTCCON uncertainties were excessively high (AGRTCCON = 2.64 ppm with 3.92 ppm or 148% uncertainty). Moreover, in 2008 and 2015, the ENSO-driven bias between global AGRTCCON and the AGR references were detected. TCCON-to-reference agreement is dramatically increased if the years with ENSO-related biases (2008, 2015) are forfeited (r = 0.67 for TCCON vs. SAT, r = 0.82 for TCCON vs. GCB). To conclude, this is the first study that showed promising ability of aggregated TCCON signal to capture global CO2 growth. As the TCCON coverage is expanding, and new versions of TCCON data are being published, multiple data sampling strategies, dynamically changing TCCON global measurement footprint, and the irregular sensitivity of AGRTCCON to strong ENSO events; all should be analyzed to transform the current efforts into a first operational algorithm for retrieving global CO2 growth from TCCON data

    In Situ Aircraft Measurements of CO2 and CH4: Mapping Spatio-Temporal Variations over Western Korea in High-Resolutions

    No full text
    A cavity ring-down spectroscopy (CRDS) G-2401m analyzer onboard a Beechcraft King Air 350, a new Korean Meteorological Administration (KMA) research aircraft measurement platform since 2018, has been used to measure in situ CO2, CH4, and CO. We analyzed the aircraft measurements obtained in two campaigns: a within-boundary layer survey over the western Republic of Korea (hereafter Korea) for analyzing the CO2 and CH4 emission characteristics for each season (the climate change monitoring (CM) CM mission), and a low altitude survey over the Yellow Sea for monitoring the pollutant plumes transported into Korea from China (the environment monitoring (EM) mission). This study analyzed CO2, CH4, and CO data from a total of 14 flights during 2019 season. To characterize the regional combustion sources signatures of CO2 and CH4, we calculated the short-term (1-min slope based on one second data) regression slope of CO to CO2 and CH4 to CO enhancements (subtracted with background level, present as ∆CO, ∆CO2, and ∆CH4); slope filtered with correlation coefficients (R2) (<0.4 were ignored). These short-term slope analyses seem to be sensitive to aircraft measurements in which the instrument samples short-time varying mixtures of different air masses. The EM missions all of which were affected by pollutants emitted in China, show the regression slope between ∆CO and ∆CO2 with of 1.8–6% and 0.3–0.7 between ∆CH4 and ∆CO. In particular, the regression slope between ∆CO and ∆CO2 increased to >4% when air flows from east-central China such as Hebei, Shandong, and Jiangsu provinces, etc., sustained for 1–3 days, suggesting pollutants from these regions were most likely characterized by incomplete fossil fuel combustions at the industries. Over 80% of the observations in the Western Korea missions were attributed to Korean emission sources with regression slope between ∆CO and ∆CO2 of 0.5–1.9%. The CO2 emissions hotspots were mainly located in the north-Western Korea of high population density and industrial activities. The higher CH4 were observed during summer season with the increasing concentration of approximately 6% over the background level, it seems to be attributed to biogenic sources such as rice paddies, landfill, livestock, and so on. It is also noted that occurrences of high pollution episodes in North-Western Korea are more closely related to the emissions in China than in Korea

    A framework for accurate, long-term, global and high resolution observations of tropospheric H2O-ήD pairs—a MUSICA review [Discussion paper]

    No full text
    In the lower/middle troposphere H2O-ÎŽD pairs are good proxies for moisture pathways, however their observation is challenging. The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) addresses this challenge by integrating remote sensing with in-situ measurement techniques. The aim is to retrieve accurate tropospheric H2O-ÎŽD pairs from the middle infrared spectra measured from ground by the FTIR (Fourier Transform InfraRed) spectrometers of the NDACC (Network for the Detection of Atmospheric Composition Change) and the thermal nadir spectra measured by IASI (Infrared Atmospheric Sounding Interferometer) aboard the MetOp satellites. In this paper we review the MUSICA framework, present the ïŹnal MUSICA products, and outline the NDACC/FTIR’s and METOP/IASI’s potential for observing accurate and consistent H2O-ÎŽD data pairs. First, we brieïŹ‚y resume the particularities of an H2O-ÎŽD pair retrieval. Second, we show that the remote sensing data of the ïŹnal product version are absolutely calibrated with respect to H2O and ÎŽD in-situ proïŹle references measured in the subtropics, between 0 and 7 km. Third, we empirically demonstrate that the calibrated remote sensing H2O-ÎŽD pairs can identify different lower/middle tropospheric moisture pathways and advert to the risk of misinterpretations caused by an incorrect processing of such remote sensing data. Fourth, we reveal that the different sensors (NDACC/FTIR instruments, MetOp/IASI-A, and MetOp/IASI-B) provide consistent H2O-ÎŽD pairs for very distinct atmospheric clear sky conditions. Fifth, we document the unique possibilities of the NDACC/FTIR instruments for providing long-term records (important for climatological studies) and of the MetOp/IASI sensors for observing diurnal signals on quasi global scale and with high horizontal resolution.This study has been conducted in the framework of the project MUSICA which is funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement number 256961. E. SepĂșlveda is supported by the Ministerio de EconomĂ­a and Competitividad of Spain for the project NOVIA (CGL2012-37505). The aircraft campaign has been co-funded by the project MUSICA and the Spanish national project AMISOC (CGL2011-24891). The AERONET sun photometer at Izaña (PI: Dr. Emilio Cuevas) has been calibrated within AERONET EUROPE TNA supported by the European Community Research Infrastructure Action under the FP7 Capacities program for Integrating Activities, ACTRIS grant agreement number 262254. The Izaña aerosol in-situ measurements are part of the project POLLINDUST (CGL2011-26259) funded by the Minister of Economy and Competitiveness of Spain

    Tropospheric water vapour isotopologue data (H\u3csub\u3e2\u3c/sub\u3e\u3csup\u3e16\u3c/sup\u3eO, H\u3csub\u3e2\u3c/sub\u3e\u3csup\u3e18\u3c/sup\u3eO, and HD\u3csup\u3e16\u3c/sup\u3eO) as obtained from NDACC/FTIR solar absorption spectra

    Get PDF
    We report on the ground-based FTIR (Fourier transform infrared) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the Detection of Atmospheric Composition Change; ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/) and via doi:10.5281/zenodo.48902. Currently, data are available for 12 globally distributed stations. They have been centrally retrieved and quality-filtered in the framework of the MUSICA project (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water). We explain particularities of retrieving the water vapour isotopologue state (vertical distribution of H216O, H218O, and HD16O) and reveal the need for a new metadata template for archiving FTIR isotopologue data. We describe the format of different data components and give recommendations for correct data usage. Data are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies disregarding different isotopologues (comparison with radiosonde data, analyses of water vapour variability and trends, etc.). The second type is needed for analysing moisture pathways by means of H2O, ήD-pair distributions

    Tropospheric water vapour isotopologue data (H216O, H218O and HD16O) as obtained from NDACC/FTIR solar absorption spectra

    Get PDF
    We report on the ground-based FTIR (Fourier Transform InfraRed) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the Detection of Atmospheric Composition Change; ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/) and via doi:10.5281/zenodo.48902. Currently, data are available for 12 globally distributed stations. They have been centrally retrieved and quality filtered in the framework of the MUSICA project (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water). We explain particularities of retrieving the water vapour isotopologue state (vertical distribution of H162O, H182O and HD16O) and reveal the need for a new meta-data template for archiving FTIR isotopologue data. We describe the format of different data components and give recommendations for correct data usage. Data are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies disregarding different isotopologues (comparison with radiosonde data, analyses of water vapour variability and trends, etc.). The second type is needed for analysing moisture pathways by means of {H2O,delta-D}-pair distributions

    Tropospheric water vapour isotopologue data (H162O, H182O and HD16O) as obtained from NDACC/FTIR solar absorption spectra [Discussion paper]

    No full text
    Tropospheric water vapour isotopologue distributions have been consistently generated and quality filtered for 12 globally distributed ground-based FTIR sites. The products are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies. The second type is needed for analysing moisture pathways by means of {H2O,ÎŽD}-pair distributions. This paper describes the data types and gives recommendations for their correct usage.E. SepĂșlveda is supported by the Ministerio de EconomĂ­a y Competitividad from Spain under the project CGL2012-37505 (NOVIA project). The measurements in Mexico (Altzomoni) are supported by UNAM-DGAPA grants (IN109914, IN112216) and Conacyt (239618, 249374). Start-up of the measurements in Altzomoni was supported by International Bureau of BMBF under contract no. 01DN12064. 15 Special thanks to A. Bezanilla for data management and the RUOA program (www.ruoa.unam.mx) and personnel for helping maintaining the station. Measurements at Wollongong are supported by the Australian Research Council, grant DP110103118. This study has been conducted in the framework of the project MUSICA which is funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement number 256961
    corecore