218 research outputs found

    Resonance Kondo Tunneling through a Double Quantum Dot at Finite Bias

    Full text link
    It is shown that the resonance Kondo tunneling through a double quantum dot (DQD) with even occupation and singlet ground state may arise at a strong bias, which compensates the energy of singlet/triplet excitation. Using the renormalization group technique we derive scaling equations and calculate the differential conductance as a function of an auxiliary dc-bias for parallel DQD described by SO(4) symmetry. We analyze the decoherence effects associated with the triplet/singlet relaxation in DQD and discuss the shape of differential conductance line as a function of dc-bias and temperature.Comment: 11 pages, 6 eps figures include

    Long-range transfer of electron-phonon coupling in oxide superlattices

    Full text link
    The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance, and other many-body phenomena in correlated-electron materials is currently the subject of intense research. However, the non-local nature of the interactions between valence electrons and lattice ions, often compounded by a plethora of vibrational modes, present formidable challenges for attempts to experimentally control and theoretically describe the physical properties of complex materials. Here we report a Raman scattering study of the lattice dynamics in superlattices of the high-temperature superconductor YBa2Cu3O7\bf YBa_2 Cu_3 O_7 and the colossal-magnetoresistance compound La2/3Ca1/3MnO3\bf La_{2/3}Ca_{1/3}MnO_{3} that suggests a new approach to this problem. We find that a rotational mode of the MnO6_6 octahedra in La2/3Ca1/3MnO3\bf La_{2/3}Ca_{1/3}MnO_{3} experiences pronounced superconductivity-induced lineshape anomalies, which scale linearly with the thickness of the YBa2Cu3O7\bf YBa_2 Cu_3 O_7 layers over a remarkably long range of several tens of nanometers. The transfer of the electron-phonon coupling between superlattice layers can be understood as a consequence of long-range Coulomb forces in conjunction with an orbital reconstruction at the interface. The superlattice geometry thus provides new opportunities for controlled modification of the electron-phonon interaction in complex materials.Comment: 13 pages, 4 figures. Revised version to be published in Nature Material

    Kondo effect in systems with dynamical symmetries

    Full text link
    This paper is devoted to a systematic exposure of the Kondo physics in quantum dots for which the low energy spin excitations consist of a few different spin multiplets ∣SiMi>|S_{i}M_{i}>. Under certain conditions (to be explained below) some of the lowest energy levels ESiE_{S_{i}} are nearly degenerate. The dot in its ground state cannot then be regarded as a simple quantum top in the sense that beside its spin operator other dot (vector) operators Rn{\bf R}_{n} are needed (in order to fully determine its quantum states), which have non-zero matrix elements between states of different spin multiplets ≠0 \ne 0. These "Runge-Lenz" operators do not appear in the isolated dot-Hamiltonian (so in some sense they are "hidden"). Yet, they are exposed when tunneling between dot and leads is switched on. The effective spin Hamiltonian which couples the metallic electron spin s{\bf s} with the operators of the dot then contains new exchange terms, Jns⋅RnJ_{n} {\bf s} \cdot {\bf R}_{n} beside the ubiquitous ones Jis⋅SiJ_{i} {\bf s}\cdot {\bf S}_{i}. The operators Si{\bf S}_{i} and Rn{\bf R}_{n} generate a dynamical group (usually SO(n)). Remarkably, the value of nn can be controlled by gate voltages, indicating that abstract concepts such as dynamical symmetry groups are experimentally realizable. Moreover, when an external magnetic field is applied then, under favorable circumstances, the exchange interaction involves solely the Runge-Lenz operators Rn{\bf R}_{n} and the corresponding dynamical symmetry group is SU(n). For example, the celebrated group SU(3) is realized in triple quantum dot with four electrons.Comment: 24 two-column page

    Principal Findings of the Invasive Blood Pressure Meta-Analysis Consortium (Inspect) on the Accuracy of Brachial Cuff Blood Pressure Devices

    Get PDF
    OBJECTIVE: Accurate measurement of blood pressure (BP) is crucial for hypertension management. Accuracy of brachial cuff (B_CUFF) devices to measure invasive (intra-arterial) BP at the brachial artery (B_INV) and aorta (A_INV) has never been systematically assessed. This study aimed to determine the: 1) relationship between B_INV and A_INV; 2) accuracy of B_CUFF devices to estimate invasive BP and; 3) accuracy of B_CUFF devices to classify BP thresholds. DESIGN AND METHOD: Three individual patient meta-analyses (by search of online databases and systematic review supplemented by measurements in a tertiary hospital cardiac catheterization laboratory) were performed to determine: 1) B_INV versus A_INV BP; 2) B_CUFF versus B_INV BP and A_INV BP and; 3) B_CUFF for BP classification versus invasive BP. RESULTS: Most subjects (90%) were patients undergoing cardiac catheterization (total N = 3004; mean age 58.7 years, 95%CI [54.0, 63.4], 68% male). As shown in the table: 1) B_INV systolic BP (SBP) was significantly higher than A_INV SBP whilst A_INV diastolic BP (DBP) was slightly higher than B_INV DBP. 2) B_CUFF underestimated B_INV SBP and overestimated B_INV DBP. The mean difference between B_CUFF SBP and A_INV SBP was small, whilst B_CUFF DBP overestimated A_INV DBP. However, according to mean absolute difference, B_CUFF and A_INV showed poor agreement. 3) B_CUFF correctly classified 31.1/28.4% of high-normal (SBP 130–139 mmHg), 54.2/52.6% of grade I (SBP 140–159 mmHg) and 45.2/50.3% of grade II (SBP 160–179 mmHg) hypertension cases, using B_INV/A_INV, respectively, as the reference. Correct classification was more frequent for SBP B_CUFF values 75%). CONCLUSIONS: While recognising the clinical importance of B_CUFF devices, there is wide variability in device accuracy for measuring intra-arterial BP. Although B_CUFF devices are reasonable for correctly classifying BP at low and very high BP thresholds, more accurate B_CUFF devices in the high-normal BP to grade II hypertension range should improve hypertension management

    Identifying Isolated Systolic Hypertension From Upper-Arm Cuff Blood Pressure Compared With Invasive Measurements

    Get PDF
    Isolated systolic hypertension (ISH) is the most common form of hypertension and is highly prevalent in older people. We recently showed differences between upper-arm cuff and invasive blood pressure (BP) become greater with increasing age, which could influence correct identification of ISH. This study sought to determine the difference between identification of ISH by cuff BP compared with invasive BP. Cuff BP and invasive aortic BP were measured in 1695 subjects (median 64 years, interquartile range [55-72], 68% male) from the INSPECT (Invasive Blood Pressure Consortium) database. Data were recorded during coronary angiography among 29 studies, using 21 different cuff BP devices. ISH was defined as ≥130/<80 mm Hg using cuff BP compared with invasive aortic BP as the reference. The prevalence of ISH was 24% (n=407) according to cuff BP but 38% (n=642) according to invasive aortic BP. There was fair agreement (Cohen κ, 0.36) and 72% concordance between cuff and invasive aortic BP for identifying ISH. Among the 28% of subjects (n=471) with misclassification of ISH status by cuff BP, 20% (n=96) of the difference was due to lower cuff systolic BP compared with invasive aortic systolic BP (mean, -16.4 mm Hg [95% CI, -18.7 to -14.1]), whereas 49% (n=231) was from higher cuff diastolic BP compared with invasive aortic diastolic BP (+14.2 mm Hg [95% CI, 11.5-16.9]). In conclusion, compared with invasive BP, cuff BP fails to identify ISH in a sizeable portion of older people and demonstrates the need to improve cuff BP measurements

    Antimicrobial activity and bioactive compounds of portuguese wild edible mushrooms methanolic extracts

    Get PDF
    The antimicrobial properties of phenolic extracts of Portuguese wild edible mushroom species (Lactarius deliciosus, Sarcodon imbricatus and Tricholoma portentosum) against pathogens were investigated. The minimal inhibitory concentrations (MICs) were evaluated for the entire mushroom, the cap and the stipe, separately; the portion of the mushroom used proved to be influenced in the results obtained, which are directly correlated with the content of total phenols and flavonoids in the extracts. The growth of Grampositive bacteria (Bacillus cereus, B. subtilis,) was well inhibited by these mushrooms, while Escherichia coli (Gramnegative bacteria) was resistant. The study on the antifungal effect of these mushrooms revealed that Candida albicans and Cryptococcus neoformans were differently inhibited for the mushrooms used

    Quantitative Analysis of Viral Load per Haploid Genome Revealed the Different Biological Features of Merkel Cell Polyomavirus Infection in Skin Tumor

    Get PDF
    Merkel cell polyomavirus (MCPyV) has recently been identified in Merkel cell carcinoma (MCC), an aggressive cancer that occurs in sun-exposed skin. Conventional technologies, such as polymerase chain reaction (PCR) and immunohistochemistry, have produced conflicting results for MCPyV infections in non-MCC tumors. Therefore, we performed quantitative analyses of the MCPyV copy number in various skin tumor tissues, including MCC (n = 9) and other sun exposure-related skin tumors (basal cell carcinoma [BCC, n = 45], actinic keratosis [AK, n = 52], Bowen’s disease [n = 34], seborrheic keratosis [n = 5], primary cutaneous anaplastic large-cell lymphoma [n = 5], malignant melanoma [n = 5], and melanocytic nevus [n = 6]). In a conventional PCR analysis, MCPyV DNA was detected in MCC (9 cases; 100%), BCC (1 case; 2%), and AK (3 cases; 6%). We then used digital PCR technology to estimate the absolute viral copy number per haploid human genome in these tissues. The viral copy number per haploid genome was estimated to be around 1 in most MCC tissues, and there were marked differences between the MCC (0.119–42.8) and AK (0.02–0.07) groups. PCR-positive BCC tissue showed a similar viral load as MCC tissue (0.662). Immunohistochemistry with a monoclonal antibody against the MCPyV T antigen (CM2B4) demonstrated positive nuclear localization in most of the high-viral-load tumor groups (8 of 9 MCC and 1 BCC), but not in the low-viral-load or PCR-negative tumor groups. These results demonstrated that MCPyV infection is possibly involved in a minority of sun-exposed skin tumors, including BCC and AK, and that these tumors display different modes of infection

    Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes

    Full text link
    Recent years have witnessed an increasing interest in neuron-glia communication. This interest stems from the realization that glia participates in cognitive functions and information processing and is involved in many brain disorders and neurodegenerative diseases. An important process in neuron-glia communications is astrocyte encoding of synaptic information transfer: the modulation of intracellular calcium dynamics in astrocytes in response to synaptic activity. Here, we derive and investigate a concise mathematical model for glutamate-induced astrocytic intracellular Ca2+ dynamics that captures the essential biochemical features of the regulatory pathway of inositol 1,4,5-trisphosphate (IP3). Starting from the well-known two-state Li-Rinzel model for calcium-induced-calcium release, we incorporate the regulation of the IP3 production and phosphorylation. Doing so we extended it to a three-state model (referred as the G-ChI model), that could account for Ca2+ oscillations triggered by endogenous IP3 metabolism as well as by IP3 production by external glutamate signals. Compared to previous similar models, our three-state models include a more realistic description of the IP3 production and degradation pathways, lumping together their essential nonlinearities within a concise formulation. Using bifurcation analysis and time simulations, we demonstrate the existence of new putative dynamical features. The cross-couplings between IP3 and Ca2+ pathways endows the system with self-consistent oscillator properties and favor mixed frequency-amplitude encoding modes over pure amplitude modulation ones. These and additional results of our model are in general agreement with available experimental data and may have important implications on the role of astrocytes in the synaptic transfer of information.Comment: 42 pages, 16 figures, 1 table. Figure filenames mirror figure order in the paper. Ending "S" in figure filenames stands for "Supplementary Figure". This article was selected by the Faculty of 1000 Biology: "Genevieve Dupont: Faculty of 1000 Biology, 4 Sep 2009" at http://www.f1000biology.com/article/id/1163674/evaluatio
    • …
    corecore