PRINCIPAL FINDINGS OF THE INVASIVE BLOOD PRESSURE META-ANALYSIS CONSORTIUM (INSPECT) ON THE ACCURACY OF BRACHIAL CUFF BLOOD PRESSURE DEVICES

Dean Picone¹, Martin Schultz¹, Petr Otahal¹, J. Andrew Black², Nathan Dwyer², Alun Hughes³, Fuyou Liang⁴, Ronak Rajani⁵, Phil Roberts-Thomson², Velandai Srikanth⁶, Kenji Takazawa⁷, James Sharman¹. ¹Menzies Institute for Medical Research, University of Tasmania, Australia, ²Department of Cardiology, Royal Hobart Hospital, Australia, ³Department of Cardiovascular Physiology and Pharmacology, University College London, United Kingdom, ⁴School of Naval Architecture, SJTU-CU International Cooperative Research Center, China, ⁵Department of Cardiology, St Thomas' Hospital, United Kingdom, ⁶School of Clinical Sciences, Monash Medical Centre, Australia, ⁷Center for Health Surveillance and Preventative Medicine, Tokyo University Medical Hospital, Japan

Objective: Accurate measurement of blood pressure (BP) is crucial for hypertension management. Accuracy of brachial cuff (B_{CUFF}) devices to measure invasive (intra-arterial) BP at the brachial artery (B_{INV}) and aorta (A_{INV}) has never been systematically assessed. This study aimed to determine the: 1) relationship between B_{INV} and A_{INV} ; 2) accuracy of B_{CUFF} devices to estimate invasive BP and; 3) accuracy of B_{CUFF} devices to classify BP thresholds.

Design and method: Three individual patient meta-analyses (by search of online databases and systematic review supplemented by measurements in a tertiary hospital cardiac catheterization laboratory) were performed to determine: 1) B $_{\rm INV}$ versus A $_{\rm INV}$ BP; 2) B $_{\rm CUFF}$ versus B $_{\rm INV}$ BP and A $_{\rm INV}$ BP and; 3) B $_{\rm CUFF}$ for BP classification versus invasive BP.

Results: Most subjects (90%) were patients undergoing cardiac catheterization (total N = 3004; mean age 58.7 years, 95%CI [54.0, 63.4], 68% male). As shown in the table: 1) $\rm B_{INV}$ systolic BP (SBP) was significantly higher than A $_{INV}$ SBP whilst A $_{INV}$ diastolic BP (DBP) was slightly higher than B $_{INV}$ DBP. 2) B $_{CUFF}$ underestimated B $_{INV}$ SBP and overestimated B $_{INV}$ DBP. The mean difference between $\rm B_{CUFF}$ SBP and A $_{INV}$ SBP was small, whilst B $_{CUFF}$ DBP overestimated A $_{INV}$ DBP. However, according to mean absolute difference, B $_{CUFF}$ and A $_{INV}$ showed poor agreement. 3) B $_{CUFF}$ correctly classified 31.1/28.4% of high-normal (SBP 130–139 mmHg), 54.2/52.6% of grade I (SBP 140–159 mmHg) and 45.2/50.3% of grade II (SBP 160–179 mmHg) hypertension cases, using B $_{INV}$ / A $_{INV}$, respectively, as the reference. Correct classification was more frequent for SBP B $_{CUFF}$ values <120 mmHg or ≥180 mmHg (both > 75%).

Conclusions: While recognising the clinical importance of B_{CUFF} devices, there is wide variability in device accuracy for measuring intra-arterial BP. Although B_{CUFF} devices are reasonable for correctly classifying BP at low and very high BP thresholds, more accurate B_{CUFF} devices in the high-normal BP to grade II hypertension range should improve hypertension management.

	Systolic BP (mmHg)		Diastolic BP (mmHg)	
	Mean difference	Mean absolute difference	Mean difference	Mean absolute difference
Meta-analysis 1	15 studies, 524 participants		14 studies, 504 participants	
B _{INV} minus A _{INV}	9.0 [5.9, 12.1]*	7.6 [5.6, 9.9]*	-0.95 [-1.7, -0.17]^	2.4 [1.8, 3.0]*
Meta-analysis 2	22 studies, 738 participants		17 studies, 865 participants	
Bouff minus Biny	-5.9 [-8.8, -3.0]*	8.3 [7.0, 9.8]*	5.1 [2.9, 7.3]*	7.0 [5.9, 8.3]*
Meta-analysis 3	37 studies, 1742 participants		34 studies, 1513 participants	
B _{CUFF} minus A _{INV}	0.66 [-1.5, 2.8]*	8.7 [7.2, 9.0]*	5.1 [3.1, 7.1]*	7.0 [6.0, 8.1]*
	Data are mean [95% confidence intervals]. *P<0.0001, *P<0.05, *P=Not significant. Linear mixed modelling used to account for patient clustering within studies.			