72 research outputs found

    Multistep Engineering of Pyrrolysyl-tRNA Synthetase to Genetically Encode Nɛ-(o-Azidobenzyloxycarbonyl) lysine for Site-Specific Protein Modification

    Get PDF
    SummaryPyrrolysyl-tRNA synthetase (PylRS) esterifies pyrrolysine to tRNAPyl. In this study, Nɛ-(tert-butyloxycarbonyl)-L-lysine (BocLys) and Nɛ-allyloxycarbonyl-L-lysine (AlocLys) were esterified to tRNAPyl by PylRS. Crystal structures of a PylRS catalytic fragment complexed with BocLys and an ATP analog and with AlocLys-AMP revealed that PylRS requires an Nɛ-carbonyl group bearing a substituent with a certain size. A PylRS(Y384F) mutant obtained by random screening exhibited higher inĀ vitro aminoacylation and inĀ vivo amber suppression activities with BocLys, AlocLys, and pyrrolysine than those of the wild-type PylRS. Furthermore, the structure-based Y306A mutation of PylRS drastically increased the inĀ vitro aminoacylation activity for Nɛ-benzyloxycarbonyl-L-lysine (ZLys). A PylRS with both the Y306A and Y384F mutations enabled the large-scale preparation (>10 mg per liter medium) of proteins site-specifically containing Nɛ-(o-azidobenzyloxycarbonyl)-L-lysine (AzZLys). The AzZLys-containing protein was labeled with a fluorescent probe, by Staudinger ligation

    Structural insights into the differences among lactisole derivatives in inhibitory mechanisms against the human sweet taste receptor

    Get PDF
    Lactisole, an inhibitor of the human sweet taste receptor, has a 2-phenoxypropionic acid skeleton and has been shown to interact with the transmembrane domain of the T1R3 subunit (T1R3-TMD) of the receptor. Another inhibitor, 2,4-DP, which shares the same molecular skeleton as lactisole, was confirmed to be approximately 10-fold more potent in its inhibitory activity than lactisole; however the structural basis of their inhibitory mechanisms against the receptor remains to be elucidated. Crystal structures of the TMD of metabotropic glutamate receptors, which along with T1Rs are categorized as class C G-protein coupled receptors, have recently been reported and made it possible to create an accurate structural model for T1R3-TMD. In this study, the detailed structural mechanism underlying sweet taste inhibition was characterized by comparing the action of lactisole on T1R3-TMD with that of 2,4-DP. We first performed a series of experiments using cultured cells expressing the sweet taste receptor with mutations and examined the interactions with these inhibitors. Based on the results, we next performed docking simulations and then applied molecular dynamics-based energy minimization. Our analyses clearly revealed that the (S)-isomers of both lactisole and 2,4-DP, interacted with the same seven residues in T1R3-TMD and that the inhibitory potencies of those inhibitors were mainly due to stabilizing interactions mediated via their carboxyl groups in the vertical dimension of the ligand pocket of T1R3-TMD. In addition, 2,4-DP engaged in a hydrophobic interaction mediated by its o-Cl group, and this interaction may be chiefly responsible for the higher inhibitory potency of 2,4-DP

    Genetic Encoding of 3-Iodo-l-Tyrosine in Escherichia coli for Single-Wavelength Anomalous Dispersion Phasing in Protein Crystallography

    Get PDF
    SummaryWe developed an Escherichia coli cell-based system to generate proteins containing 3-iodo-l-tyrosine at desired sites, and we used this system for structure determination by single-wavelength anomalous dispersion (SAD) phasing with the strong iodine signal. Tyrosyl-tRNA synthetase from Methanocaldococcus jannaschii was engineered to specifically recognize 3-iodo-l-tyrosine. The 1.7 ƅ crystal structure of the engineered variant, iodoTyrRS-mj, bound with 3-iodo-l-tyrosine revealed the structural basis underlying the strict specificity for this nonnatural substrate; the iodine moiety makes van der Waals contacts with 5 residues at the binding pocket. E.Ā coli cells expressing iodoTyrRS-mj and the suppressor tRNA were used to incorporate 3-iodo-l-tyrosine site specifically into the ribosomal protein N-acetyltransferase from Thermus thermophilus. The crystal structure of this enzyme with iodotyrosine was determined at 1.8 and 2.2 ƅ resolutions by SAD phasing at CuKĪ± and CrKĪ± wavelengths, respectively. The native structure, determined by molecular replacement, revealed no significant structural distortion caused by iodotyrosine incorporation

    Pressure-induced structural phase transition and new superconducting phase in UTe2

    Full text link
    We report on the crystal structure and electronic properties of the heavy fermion superconductor UTe2 at high pressure up to 11 GPa, as investigated by X-ray diffraction and electrical resistivity experiments. The X-ray diffraction measurements under high pressure using a synchrotron light source reveal anisotropic linear compressibility of the unit cell up to 3.5 GPa, while a pressure-induced structural phase transition is observed above 3.5-4GPa at room temperature, where the body-centered orthorhombic crystal structure with the space group Immm changes into a body-centered tetragonal structure with the space group I4/mmm. The molar volume drops abruptly at the critical pressure, while the distance between the first-nearest neighbor of U atoms increases, implying a switch from the heavy electronic states to the weakly correlated electronic states. Surprisingly, a new superconducting phase at pressures higher than 7 GPa was detected at Tsc above 2K with a relatively low upper-critical field, Hc2(0). The resistivity above 3.5GPa, thus, in the high-pressure tetragonal phase, shows a large drop below 230 K, which may also be related to a considerable change from the heavy electronic states to the weakly correlated electronic states.Comment: 11 pages, 9 figure

    Spin-gap formation due to spin-Peierls instability in Ļ€-orbital-ordered NaO2

    Get PDF
    We have investigated the low-temperature magnetism of sodium superoxide (NaO2), in which spin, orbital, and lattice degrees of freedom are closely entangled. The magnetic susceptibility shows anomalies at T1 = 220 K and T2 = 190 K, which correspond well to the structural phase transition temperatures, and a sudden decrease below T3 = 34 K. At 4.2 K, the magnetization shows a clear stepwise anomaly around 30 T with a large hysteresis. In addition, the muon spin relaxation experiments indicate no magnetic phase transition down to T = 0.3 K. The inelastic neutron scattering spectrum exhibits magnetic excitation with a finite energy gap. These results confirm that the ground state of NaO2 is a spin-singlet state. To understand this ground state in NaO2, we performed Raman scattering experiments. All the Raman-active libration modes expected for the marcasite phase below T2 are observed. Furthermore, we find that several new peaks appear below T3. This directly evidences the low crystal symmetry, namely, the presence of the phase transition at T3.We conclude that the singlet ground state of NaO2 is due to the spin-Peierls instability

    Functional replacement of the endogenous tyrosyl-tRNA synthetaseā€“tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion

    Get PDF
    Non-natural amino acids have been genetically encoded in living cells, using aminoacyl-tRNA synthetaseā€“tRNA pairs orthogonal to the host translation system. In the present study, we engineered Escherichia coli cells with a translation system orthogonal to the E. coli tyrosyl-tRNA synthetase (TyrRS)ā€“tRNATyr pair, to use E. coli TyrRS variants for non-natural amino acids in the cells without interfering with tyrosine incorporation. We showed that the E. coli TyrRSā€“tRNATyr pair can be functionally replaced by the Methanocaldococcus jannaschii and Saccharomyces cerevisiae tyrosine pairs, which do not cross-react with E. coli TyrRS or tRNATyr. The endogenous TyrRS and tRNATyr genes were then removed from the chromosome of the E. coli cells expressing the archaeal TyrRSā€“tRNATyr pair. In this engineered strain, 3-iodo-l-tyrosine and 3-azido-l-tyrosine were each successfully encoded with the amber codon, using the E. coli amber suppressor tRNATyr and a TyrRS variant, which was previously developed for 3-iodo-l-tyrosine and was also found to recognize 3-azido-l-tyrosine. The structural basis for the 3-azido-l-tyrosine recognition was revealed by X-ray crystallography. The present engineering allows E. coli TyrRS variants for non-natural amino acids to be developed in E. coli, for use in both eukaryotic and bacterial cells for genetic code expansion

    Enpp1 is an anti-aging factor that regulates Klotho under phosphate overload conditions

    Get PDF
    Control of phosphate metabolism is crucial to regulate aging in mammals. Klotho is a well-known anti-aging factor that regulates phosphate metabolism: mice mutant or deficient in Klotho exhibit phenotypes resembling human aging. Here we show that ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) is required for Klotho expression under phosphate overload conditions. Loss-of-function Enpp1 ttw/ttw mice under phosphate overload conditions exhibited phenotypes resembling human aging and Klotho mutants, such as short life span, arteriosclerosis and osteoporosis, with elevated serum 1,25(OH)2D3 levels. Enpp1ttw/ttw mice also exhibited significantly reduced renal Klotho expression under phosphate overload conditions, and aging phenotypes in these mice were rescued by Klotho overexpression, a low vitamin D diet or vitamin D receptor knockout. These findings indicate that Enpp1 plays a crucial role in regulating aging via Klotho expression under phosphate overload conditions

    A prospective compound screening contest identified broader inhibitors for Sirtuin 1

    Get PDF
    Potential inhibitors of a target biomolecule, NAD-dependent deacetylase Sirtuin 1, were identified by a contest-based approach, in which participants were asked to propose a prioritized list of 400 compounds from a designated compound library containing 2.5 million compounds using in silico methods and scoring. Our aim was to identify target enzyme inhibitors and to benchmark computer-aided drug discovery methods under the same experimental conditions. Collecting compound lists derived from various methods is advantageous for aggregating compounds with structurally diversified properties compared with the use of a single method. The inhibitory action on Sirtuin 1 of approximately half of the proposed compounds was experimentally accessed. Ultimately, seven structurally diverse compounds were identified

    Selective Transmission of R5 HIV-1 over X4 HIV-1 at the Dendritic Cellā€“T Cell Infectious Synapse Is Determined by the T Cell Activation State

    Get PDF
    Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against HIV. On the other hand, due to the susceptibility of DCs to HIV infection, virus replication is strongly enhanced in DCā€“T cell interaction via an immunological synapse formed during the antigen presentation process. When HIV-1 is isolated from individuals newly infected with the mixture of R5 and X4 variants, R5 is predominant, irrespective of the route of infection. Because the early massive HIV-1 replication occurs in activated T cells and such T-cell activation is induced by antigen presentation, we postulated that the selective expansion of R5 may largely occur at the level of DCā€“T cell interaction. Thus, the immunological synapse serves as an infectious synapse through which the virus can be disseminated in vivo. We used fluorescent recombinant X4 and R5 HIV-1 consisting of a common HIV-1 genome structure with distinct envelopes, which allowed us to discriminate the HIV-1 transmitted from DCs infected with the two virus mixtures to antigen-specific CD4+ T cells by flow cytometry. We clearly show that the selective expansion of R5 over X4 HIV-1 did occur, which was determined at an early entry step by the activation status of the CD4+ T cells receiving virus from DCs, but not by virus entry efficiency or productivity in DCs. Our results imply a promising strategy for the efficient control of HIV infection

    Optic Neuritis Caused by Rathkeā€™s Cleft Cyst in Young Adult

    No full text
    We report a case of right optic neuritis caused by Rathke's cleft cyst (RCC) in a young adult. A 15-year-old boy presented with reduced visual acuity in the right eye. He was diagnosed with optic neuritis in the right eye 4 years earlier at other clinics before he was referred to our department. During our one-year examinations, the cause of the reduced vision in his right eye could not be determined conclusively. At the age of 17 years, a RCC was detected by a neurosurgeon who specialized in hypophyseal diseases. He underwent microscopic transsphenoidal resection of the cyst, and his vision recovered to 1.2 and he has had no recurrence for at least 9 months. We suggest that repeated rupturing of the RCC was the cause of the optic neuritis, and a RCC can be successfully treated by surgery even after 3 years of optic neuritis
    • ā€¦
    corecore