157 research outputs found

    Valley Polarization in Si(100) at Zero Magnetic Field

    Full text link
    The valley splitting, which lifts the degeneracy of the lowest two valley states in a SiO2_2/(100)Si/SiO2_2 quantum well is examined through transport measurements. We demonstrate that the valley splitting can be observed directly as a step in the conductance defining a boundary between valley-unpolarized and polarized regions. This persists to well above liquid helium temperature and shows no dependence on magnetic field, indicating that single-particle valley splitting and valley-polarization exist in (100) silicon even at zero magnetic field.Comment: Accpeted for publication in Phys. Rev. Let

    Global optical potential for nucleus-nucleus systems from 50 MeV/u to 400 MeV/u

    Full text link
    We present a new global optical potential (GOP) for nucleus-nucleus systems, including neutron-rich and proton-rich isotopes, in the energy range of 5040050 \sim 400 MeV/u. The GOP is derived from the microscopic folding model with the complex GG-matrix interaction CEG07 and the global density presented by S{\~ a}o Paulo group. The folding model well accounts for realistic complex optical potentials of nucleus-nucleus systems and reproduces the existing elastic scattering data for stable heavy-ion projectiles at incident energies above 50 MeV/u. We then calculate the folding-model potentials (FMPs) for projectiles of even-even isotopes, 822^{8-22}C, 1224^{12-24}O, 1638^{16-38}Ne, 2040^{20-40}Mg, 2248^{22-48}Si, 2652^{26-52}S, 3062^{30-62}Ar, and 3470^{34-70}Ca, scattered by stable target nuclei of 12^{12}C, 16^{16}O, 28^{28}Si, 40^{40}Ca 58^{58}Ni, 90^{90}Zr, 120^{120}Sn, and 208^{208}Pb at the incident energy of 50, 60, 70, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, and 400 MeV/u. The calculated FMP is represented, with a sufficient accuracy, by a linear combination of 10-range Gaussian functions. The expansion coefficients depend on the incident energy, the projectile and target mass numbers and the projectile atomic number, while the range parameters are taken to depend only on the projectile and target mass numbers. The adequate mass region of the present GOP by the global density is inspected in comparison with FMP by realistic density. The full set of the range parameters and the coefficients for all the projectile-target combinations at each incident energy are provided on a permanent open-access website together with a Fortran program for calculating the microscopic-basis GOP (MGOP) for a desired projectile nucleus by the spline interpolation over the incident energy and the target mass number.Comment: 25 pages, 13 figure

    Electron Mobility and Magneto Transport Study of Ultra-Thin Channel Double-Gate Si MOSFETs

    Full text link
    We report on detailed room temperature and low temperature transport properties of double-gate Si MOSFETs with the Si well thickness in the range 7-17 nm. The devices were fabricated on silicon-on-insulator wafers utilizing wafer bonding, which enabled us to use heavily doped metallic back gate. We observe mobility enhancement effects at symmetric gate bias at room temperature, which is the finger print of the volume inversion/accumulation effect. An asymmetry in the mobility is detected at 300 K and at 1.6 K between the top and back interfaces of the Si well, which is interpreted to arise from different surface roughnesses of the interfaces. Low temperature peak mobilities of the reported devices scale monotonically with Si well thickness and the maximum low temperature mobility was 1.9 m2/Vs, which was measured from a 16.5 nm thick device. In the magneto transport data we observe single and two sub-band Landau level filling factor behavior depending on the well thickness and gate biasing

    Impurity conduction in phosphorus-doped buried-channel silicon-on-insulator field-effect transistors

    Full text link
    We investigate transport in phosphorus-doped buried-channel metal-oxide-semiconductor field-effect transistors at temperatures between 10 and 295 K. In a range of doping concentration between around 2.1 and 8.7 x 1017 cm-3, we find that a clear peak emerges in the conductance versus gate-voltage curves at low temperature. In addition, temperature dependence measurements reveal that the conductance obeys a variable-range-hopping law up to an unexpectedly high temperature of over 100 K. The symmetric dual-gate configuration of the silicon-on-insulator we use allows us to fully characterize the vertical-bias dependence of the conductance. Comparison to computer simulation of the phosphorus impurity band depth-profile reveals how the spatial variation of the impurity-band energy determines the hopping conduction in transistor structures. We conclude that the emergence of the conductance peak and the high-temperature variable-range hopping originate from the band bending and its change by the gate bias. Moreover, the peak structure is found to be strongly related to the density of states (DOS) of the phosphorus impurity band, suggesting the possibility of performing a novel spectroscopy for the DOS of phosphorus, the dopant of paramount importance in Si technology, through transport experiments.Comment: 9 figure

    Enhanced collectivity in 74Ni

    Get PDF
    The neutron-rich nucleus 74Ni was studied with inverse-kinematics inelastic proton scattering using a 74Ni radioactive beam incident on a liquid hydrogen targetat a center-of-mass energy of 80 MeV. From the measured de-excitation gamma-rays, the population of the first 2+ state was quantified. The angle-integrated excitation cross section was determined to be 14(4) mb. A deformation length of delta = 1.04(16) fm was extracted in comparison with distorted wave theory, which suggests that the enhancement of collectivity established for 70Ni continues up to 74Ni. A comparison with results of shell model and quasi-particle random phase approximation calculations indicates that the magic character of Z = 28 or N = 50 is weakened in 74Ni

    Spatially explicit approach to estimation of total population abundance in field surveys.

    Get PDF
    Population abundance is fundamental in ecology and conservation biology, and provides essential information for predicting population dynamics and implementing conservation actions. While a range of approaches have been proposed to estimate population abundance based on existing data, data deficiency is ubiquitous. When information is deficient, a population estimation will rely on labor intensive field surveys. Typically, time is one of the critical constraints in conservation, and management decisions must often be made quickly under a data deficient situation. Hence, it is important to acquire a theoretical justification for survey methods to meet a required estimation precision. There is no such theory available in a spatially explicit context, while spatial considerations are critical to any field survey. Here, we develop a spatially explicit theory for population estimation that allows us to examine the estimation precision under different survey designs and individual distribution patterns (e.g. random/clustered sampling and individual distribution). We demonstrate that clustered sampling decreases the estimation precision when individuals form clusters, while sampling designs do not affect the estimation accuracy when individuals are distributed randomly. Regardless of individual distribution, the estimation precision becomes higher with increasing total population abundance and the sampled fraction. These insights provide theoretical bases for efficient field survey designs in information deficiency situations

    Metal-Insulator oscillations in a Two-dimensional Electron-Hole system

    Full text link
    The electrical transport properties of a bipolar InAs/GaSb system have been studied in magnetic field. The resistivity oscillates between insulating and metallic behaviour while the quantum Hall effect shows a digital character oscillating from 0 to 1 conducatance quantum e^2/h. The insulating behaviour is attributed to the formation of a total energy gap in the system. A novel looped edge state picture is proposed associated with the appearance of a voltage between Hall probes which is symmetric on magnetic field reversal.Comment: 4 pages, 5 Postscript figures: revised versio

    Virtual Reality Simulator for Medical Auscultation Training

    Get PDF
    © Springer Nature Switzerland AG 2019. According to the Oxford English dictionary, auscultation is “the action of listening to sounds from the heart, lungs, or other organs, typically with a stethoscope, as a part of medical diagnosis.” In this work, we describe a medical simulator that includes audio, visual, pseudo-haptic, and spatial elements for training medical students in auscultation. In our training simulator, the user is fully immersed in a virtual reality (VR) environment. A typical hospital bedside scenario was recreated, and the users can see their own body and the patient increase immersion. External tracking devices are used to acquire the user’s movements and map them into the VR environment. The main idea behind this work is for the user to associate the heart and lung sounds, as heard through the stethoscope with the corresponding health-related problems. Several sound parameters including the volume, give information about the type and severity of the disease. Our simulator can reproduce sounds belonging to the heart and lungs. Through the proposed VR-based training, the medical student ideally will learn to relate sounds to illnesses in a realistic setting, accelerating the learning process

    Field-induced polarisation of Dirac valleys in bismuth

    Full text link
    Electrons are offered a valley degree of freedom in presence of particular lattice structures. Manipulating valley degeneracy is the subject matter of an emerging field of investigation, mostly focused on charge transport in graphene. In bulk bismuth, electrons are known to present a threefold valley degeneracy and a Dirac dispersion in each valley. Here we show that because of their huge in-plane mass anisotropy, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. According to our measurements, charge conductivity by carriers of a single valley can exceed four-fifth of the total conductivity in a wide range of temperature and magnetic field. At high temperature and low magnetic field, the three valleys are interchangeable and the three-fold symmetry of the underlying lattice is respected. As the temperature lowers and/or the magnetic field increases, this symmetry is spontaneously lost. The latter may be an experimental manifestation of the recently proposed valley-nematic Fermi liquid state.Comment: 14 pages + 5 pages of supplementary information; a slightly modified version will appear as an article in Nature physic
    corecore