8 research outputs found

    チョクセツ フッソカ ニ ヨル ペルフルオロ カゴウブツ ノ ゴウセイ ケンキュウ

    Get PDF
    京都大学0048新制・論文博士博士(工学)乙第12290号論工博第4006号新制||工||1450(附属図書館)26628UT51-2008-T61(主査)教授 檜山 爲次郎, 教授 松原 誠二郎, 教授 中條 善樹学位規則第4条第2項該当Doctor of EngineeringKyoto UniversityDFA

    Straightforward Pentafluorosulfanylation for Molecular Design

    No full text
    Pentafluorosulfanylation is a powerful boost of molecular properties for many applications. In order to leverage its full potential, a direct and high-yielding synthetic strategy is in great demand. We report here how the discovery of a direct pentafluorosulfanylation of thiolated arenes led to a generalized synthetic approach toward aryl– and heteroaryl pentafluorosulfanyl (SF5) compounds from various common building blocks. The combination of onium halides with silver(II) fluoride (AgF2) provided drastically enhanced oxidative fluorination conditions that enabled the single-step conversion of various thiophenol derivatives to SF5-compounds in high yields and broad scope. The particularly high reaction rate is accounted to an onium fluoroargentate(II)-mediated fluorination mechanism. The recycling potential of inorganic silver byproducts furthermore offers an avenue into industrial-scale production

    Photo-on-Demand In Situ Synthesis of N‑Substituted Trichloroacetamides with Tetrachloroethylene and Their Conversions to Ureas, Carbamates, and Polyurethanes

    No full text
    N-substituted trichloroacetamides (NTCAs), which serve as blocked isocyanates, were synthesized in ∼97% yields by in situ photo-on-demand trichloroacetylation of amines with tetrachloroethylene (TCE). The reactions were performed by photo-irradiation of TCE solutions containing an amine under O2 bubbling over 70 °C with a low-pressure mercury lamp. TCE underwent photochemical oxidation to afford trichloroacetyl chloride having high toxicity and corrosivity, which then reacts in situ with the amine to afford NTCA. Compared with conventional NTCA synthesis with hexachloroacetone, the present reaction has the advantage of being widely applicable to a variety of amines, even those with low nucleophilicity such as amides, fluorinated amines, and amine HCl salts. NTCAs could be converted to the corresponding N-substituted ureas and carbamates through base-catalyzed condensation with amines and alcohols, respectively, with the elimination of CHCl3. The reaction may proceed by the initial formation of isocyanate and its subsequent addition reaction with the amine or alcohol. This photochemical reaction also enables the synthesis of fluorinated NTCAs, which accelerate the reactions, and realizes the synthesis of novel fluorinated chemicals including polyurethanes
    corecore