726 research outputs found

    Bridge condition assessment from long-term monitoring by means of Bayesian hypothesis test

    Get PDF
    Fifth International Symposium on Life-Cycle Civil Engineering (IALCCE 2016), 16-19 October 2016, Delft, The Netherlands.This study presents an approach to reduce effects of environmental and operational factors on long-term monitoring data of bridges. The Bayesian approach comprising both Bayesian regression and Bayesian hypothesis test is applied to investigate monitoring data of an in-service seven-span plate-Gerber bridge. This study considers time-varying temperature and vehicle weights as environmental and operational factors respectively. Vehicle weights were measured utilizing a bridge weigh-in-motion (BWIM) system installed on the bridge. All data was taken from a healthy bridge, since no damage and deterioration was reported during the monitoring period. Observations through the study demonstrated that considering both temperature and vehicle weight as environmental and operational factors in Bayesian regression led to improved regression results than that considering only temperature. It also showed that monitoring the data observed at a specific time could reduce influence of traffic in long-term monitoring. In the Bayesian hypothesis testing utilizing data from the healthy bridge, the bridge was judged as healthy

    Simulations of interfacial creep generation for shrink-fitted bimetallic work roll

    Get PDF
    The bimetallic work rolls are widely used in the roughing stands of hot rolling stand mills. The rolls are classified into two types: one is a single-solid type, and the other is a shrink-fitted construction type consisting of a sleeve and a shaft. Regarding the assembled rolls consisting of a sleeve and a shaft, the interfacial creep phenomenon can be seen between the shaft and the shrink-fitted sleeve. This interfacial creep phenomenon causes the relative displacement on the interface between the sleeve and the shaft. Although to clarify this creep mechanism is important issues, experimental simulation is very difficult to be conducted. In this paper, the interfacial creep phenomenon is realized by using the elastic finite element method (FEM) analysis. It is found that the interface creep can be regarded as the accumulation of the relative circumferential displacement on the interface of the sleeve and the shaft.2018 International Conference on Material Strength and Applied Mechanics (MSAM 2018), 10–13 April 2018, Kitakyushu City, Japa

    Third-Generation W(CNAr)₆ Photoreductants (CNAr = Fused-Ring and Alkynyl-Bridged Arylisocyanides)

    Get PDF
    Homoleptic tungsten(0) arylisocyanides possess photophysical and photochemical properties that rival those of archetypal ruthenium(II) and iridium(III) polypyridine complexes. Previous studies established that extending the π-system of 2,6-diisopropylphenylisocyanide (CNDipp) by coupling aryl substituents para to the isocyanide functionality results in W(CNDippAr)₆ oligoarylisocyanide complexes with greatly enhanced metal-to-ligand charge transfer (MLCT) excited-state properties relative to those of W(CNDipp)₆. Extending electronic modifications to delineate additional design principles for this class of photosensitizers, herein we report a series of W(CNAr)₆ compounds with naphthalene-based fused-ring (CN-1-(2-ⁱPr)-Naph) and CNDipp-based alkynyl-bridged (CNDipp^(CC)Ar) arylisocyanide ligands. Systematic variation of the secondary aromatic system in the CNDippCCAr platform provides a straightforward method to modulate the photophysical properties of W(CNDipp^(CC)Ar)₆ complexes, allowing access to an extended range of absorption/luminescence profiles and highly reducing excited states, while maintaining the high molar absorptivity MLCT absorption bands, high photoluminescence quantum yields, and long excited-state lifetimes of previous W(CNAr)₆ complexes. Notably, W(CN-1-(2-iPr)-Naph)₆ exhibits the longest excited-state lifetime of all W(CNAr)₆ complexes explored thus far, highlighting the potential benefits of utilizing fused-ring arylisocyanide ligands in the construction of tungsten(0) photoreductants

    Third-Generation W(CNAr)₆ Photoreductants (CNAr = Fused-Ring and Alkynyl-Bridged Arylisocyanides)

    Get PDF
    Homoleptic tungsten(0) arylisocyanides possess photophysical and photochemical properties that rival those of archetypal ruthenium(II) and iridium(III) polypyridine complexes. Previous studies established that extending the π-system of 2,6-diisopropylphenylisocyanide (CNDipp) by coupling aryl substituents para to the isocyanide functionality results in W(CNDippAr)₆ oligoarylisocyanide complexes with greatly enhanced metal-to-ligand charge transfer (MLCT) excited-state properties relative to those of W(CNDipp)₆. Extending electronic modifications to delineate additional design principles for this class of photosensitizers, herein we report a series of W(CNAr)₆ compounds with naphthalene-based fused-ring (CN-1-(2-ⁱPr)-Naph) and CNDipp-based alkynyl-bridged (CNDipp^(CC)Ar) arylisocyanide ligands. Systematic variation of the secondary aromatic system in the CNDippCCAr platform provides a straightforward method to modulate the photophysical properties of W(CNDipp^(CC)Ar)₆ complexes, allowing access to an extended range of absorption/luminescence profiles and highly reducing excited states, while maintaining the high molar absorptivity MLCT absorption bands, high photoluminescence quantum yields, and long excited-state lifetimes of previous W(CNAr)₆ complexes. Notably, W(CN-1-(2-iPr)-Naph)₆ exhibits the longest excited-state lifetime of all W(CNAr)₆ complexes explored thus far, highlighting the potential benefits of utilizing fused-ring arylisocyanide ligands in the construction of tungsten(0) photoreductants

    Photometric Properties of Kiso Ultraviolet-Excess Galaxies in the Lynx-Ursa Major Region

    Get PDF
    We have performed a systematic study of several regions in the sky where the number of galaxies exhibiting star formation (SF) activity is greater than average. We used Kiso ultraviolet-excess galaxies (KUGs) as our SF-enhanced sample. By statistically comparing the KUG and non-KUG distributions, we discovered four KUG-rich regions with a size of ∌10∘×10∘\sim 10^\circ \times 10^\circ. One of these regions corresponds spatially to a filament of length ∌60h−1\sim 60 h^{-1} Mpc in the Lynx-Ursa Major region (α∌9h−10h,Ύ∌42∘−48∘\alpha \sim 9^{\rm h} - 10^{\rm h}, \delta \sim 42^\circ - 48^\circ). We call this ``the Lynx-Ursa Major (LUM) filament''. We obtained V(RI)CV(RI)_{\rm C} surface photometry of 11 of the KUGs in the LUM filament and used these to investigate the integrated colors, distribution of SF regions, morphologies, and local environments. We found that these KUGs consist of distorted spiral galaxies and compact galaxies with blue colors. Their star formation occurs in the entire disk, and is not confined to just the central regions. The colors of the SF regions imply that active star formation in the spiral galaxies occurred 107−810^{7 - 8} yr ago, while that of the compact objects occurred 106−710^{6-7} yr ago. Though the photometric characteristics of these KUGs are similar to those of interacting galaxies or mergers, most of these KUGs do not show direct evidence of merger processes.Comment: 39 pages LaTeX, using aasms4.sty, 20 figures, ApJS accepted. The Title of the previous one was truncated by the author's mistake, and is corrected. Main body of the paper is unchange

    The Relative Orientation of Nuclear Accretion and Galaxy Stellar Disks in Seyfert Galaxies

    Get PDF
    We use the difference (delta) between the position angles of the nuclear radio emission and the host galaxy major axis to investigate the distribution of the angle (beta) between the axes of the nuclear accretion disk and the host galaxy disk in Seyfert galaxies. We provide a critical appraisal of the quality of all measurements, and find that the data are limited by observational uncertainties and biases, such as the well known deficiency of Seyfert galaxies of high inclination. There is weak evidence that the distribution of delta for Seyfert 2 galaxies may be different (at the 90% confidence level) from a uniform distribution, while the Seyfert 1 delta distribution is not significantly different from a uniform distribution or from the Seyfert 2 delta distribution. The cause of the possible non-uniformity in the distribution of delta for Seyfert 2 galaxies is discussed. Seyfert nuclei in late-type spiral galaxies may favor large values of delta (at the ~96% confidence level), while those in early-type galaxies show a more or less random distribution of delta. This may imply that the nuclear accretion disk in non-interacting late-type spirals tends to align with the stellar disk, while that in early-type galaxies is more randomly oriented, perhaps as a result of accretion following a galaxy merger. We point out that biases in the distribution of inclination translate to biased estimates of beta in the context of the unified scheme. When this effect is taken into account, the distributions of beta for all Seyferts together, and of Seyfert 1's and 2's separately, agree with the hypothesis that the radio jets are randomly oriented with respect to the galaxy disk. The data are consistent with the expectations of the unified scheme, but do not demand it.Comment: To appear in the Astrophysical Journal, Vol 516 #1, May 1, 1999. Corrected figure placement within pape

    Engineering of Cyclodextrin Product Specificity and pH Optima of the Thermostable Cyclodextrin Glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1

    Get PDF
    The product specificity and pH optimum of the thermostable cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacterium thermosulfurigenes EM1 was engineered using a combination of x-ray crystallography and site-directed mutagenesis. Previously, a crystal soaking experiment with the Bacillus circulans strain 251 ÎČ-CGTase had revealed a maltononaose inhibitor bound to the enzyme in an extended conformation. An identical experiment with the CGTase from T. thermosulfurigenes EM1 resulted in a 2.6-Å resolution x-ray structure of a complex with a maltohexaose inhibitor, bound in a different conformation. We hypothesize that the new maltohexaose conformation is related to the enhanced α-cyclodextrin production of the CGTase. The detailed structural information subsequently allowed engineering of the cyclodextrin product specificity of the CGTase from T. thermosulfurigenes EM1 by site-directed mutagenesis. Mutation D371R was aimed at hindering the maltohexaose conformation and resulted in enhanced production of larger size cyclodextrins (ÎČ- and Îł-CD). Mutation D197H was aimed at stabilization of the new maltohexaose conformation and resulted in increased production of α-CD. Glu258 is involved in catalysis in CGTases as well as α-amylases, and is the proton donor in the first step of the cyclization reaction. Amino acids close to Glu258 in the CGTase from T. thermosulfurigenes EM1 were changed. Phe284 was replaced by Lys and Asn327 by Asp. The mutants showed changes in both the high and low pH slopes of the optimum curve for cyclization and hydrolysis when compared with the wild-type enzyme. This suggests that the pH optimum curve of CGTase is determined only by residue Glu258.

    Optical Identification of the ASCA Large Sky Survey

    Get PDF
    We present results of optical identification of the X-ray sources detected in the ASCA Large Sky Survey. Optical spectroscopic observations were done for 34 X-ray sources which were detected with the SIS in the 2-7 keV band above 3.5 sigma. The sources are identified with 30 AGNs, 2 clusters of galaxies, and 1 galactic star. Only 1 source is still unidentified. The flux limit of the sample corresponds to 1 x 10^{-13} erg s^{-1} cm^{-2} in the 2-10 keV band. Based on the sample, the paper discusses optical and X-ray spectral properties of the AGNs, contribution of the sources to the Cosmic X-ray Background, and redshift and luminosity distributions of the AGNs. An interesting result is that the redshift distribution of the AGNs suggests a deficiency of high-redshift (0.5 10^{44} erg s^{-1}) absorbed narrow-line AGNs (so called type 2 QSOs).Comment: Accepted for publication in ApJ. 57 pages with 13 figures, 9 JPG plates, 5 additional PS tables. Original EPS plates (gzipped format ~1Mbyte/plate) and TeX tables are available from ftp://ftp.kusastro.kyoto-u.ac.jp/pub/akiyama/0001289

    Low noise amplication of an optically carried microwave signal: application to atom interferometry

    Get PDF
    In this paper, we report a new scheme to amplify a microwave signal carried on a laser light at λ\lambda=852nm. The amplification is done via a semiconductor tapered amplifier and this scheme is used to drive stimulated Raman transitions in an atom interferometer. Sideband generation in the amplifier, due to self-phase and amplitude modulation, is investigated and characterized. We also demonstrate that the amplifier does not induce any significant phase-noise on the beating signal. Finally, the degradation of the performances of the interferometer due to the amplification process is shown to be negligible
    • 

    corecore