63 research outputs found

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    Amicrobial pustulosis associated with IgA nephropathy and Sjögren's syndrome

    Get PDF
    Amicrobial pustulosis is a rare clinical entity characterized by a relapsing pustular eruption, primarily involving the skin folds. We describe a case of amicrobial pustulosis associated with autoimmune diseases (APAD). The patient suffered from IgA nephropathy and Sjögren's syndrome. Skin symptoms were alleviated dramatically after corticosteroid pulse therapy and tonsillectomy

    Experimental Study of a Radial Turbine Using Pitch-Controlled Guide Vanes for Wave Power Conversion

    No full text
    In order to develop a high-performance radial turbine for wave power conversion, a radial turbine with pitch-controlled guide vanes has been proposed and manufactured in the study. The proposed radial turbine has been investigated experimentally by model testing under steady and sinusoidal flow conditions. Then, the experimental results have been compared with those of the conventional radial turbine for wave power conversion, that is, a radial turbine with fixed guide vanes. As a result, the running characteristics of the proposed radial turbine under steady and sinusoidal flow conditions were clarified and the effect of diffuser setting angle of guide vane on the turbine characteristics was presented. Furthermore, it seems that the proposed radial turbine is much superior to the conventional radial turbine
    corecore