128 research outputs found
What controls the variability of oxygen in the subpolar North Pacific
2011 Spring.Includes bibliographical references.Dissolved oxygen is a widely observed chemical quantity in the oceans along with temperature and salinity. Changes in the dissolved oxygen have been observed over the world oceans. Observed oxygen in the Ocean Station Papa (OSP, 50°N, 145°W) in the Gulf of Alaska exhibits strong variability over interannual and decadal timescales, however, the mechanisms driving the observed variability are not yet fully understood. Furthermore, irregular sampling frequency and relatively short record length make it difficult to detect a low-frequency variability. Motivated by these observations, we investigate the mechanisms driving the low-frequency variability of oxygen in the subpolar North Pacific. The specific purposes of this study are 1) to evaluate the robustness of the observed low-frequency variability of dissolved oxygen and 2) to determine the mechanisms driving the observed variability using statistical data analysis and numerical simulations. To evaluate the robustness of the low-frequency variability, we conducted spectral analyses on the observed oxygen at OSP. To address the irregular sampling frequency we randomly sub-sampled the raw data to form 500 ensemble members with a regular time interval, and then performed spectral analyses. The resulting power spectrum of oxygen exhibits a robust low-frequency variability and a statistically significant spectral peak is identified at a timescale of 15-20 years. The wintertime oceanic barotropic streamfunction is significantly correlated with the observed oxygen anomaly at OSP with a north-south dipole structure over the North Pacific. We hypothesize that the observed low-frequency variability is primarily driven by the variability of large-scale ocean circulation in the North Pacific. To test this hypothesis, we simulate the three-dimensional distribution of oxygen anomaly between 1952 to 2001 using data-constrained circulation fields. The simulated oxygen anomaly shows an outstanding variability in the Gulf of Alaska, showing that this region is a hotspot of oxygen fluctuation. Anomalous advection acting on the climatological mean oxygen gradient is the source of oxygen variability in this simulation. Empirical Orthogonal Function (EOF) analyses of the simulated oxygen show that the two dominant modes of the oxygen anomaly explains more than 50% of oxygen variance over the North Pacific, that are closely related to the dominant modes of climate variability in the North Pacific (Pacific Decadal Oscillation and North Pacific Oscillation). Our results imply the important link between large-scale climate fluctuations, ocean circulation and biogeochemical tracers in the North Pacific
Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models
This study examines the linkages between the upper-ocean (0–200 m) oxygen (O2) content and stratification in the North Pacific Ocean using four Earth system models (ESMs), an ocean hindcast simulation, and an ocean reanalysis. The trends and variability in oceanic O2 content are driven by the imbalance between physical supply and biological demand. Physical supply is primarily controlled by ocean ventilation, which is responsible for the transport of O2-rich surface waters to the subsurface. Isopycnic potential vorticity (IPV), a quasi-conservative tracer proportional to density stratification that can be evaluated from temperature and salinity measurements, is used herein as a dynamical proxy for ocean ventilation. The predictability potential of the IPV field is evaluated through its information entropy. The results highlight a strong O2–IPV connection and somewhat higher (as compared to the rest of the basin) predictability potential for IPV across the tropical Pacific, where the El Niño–Southern Oscillation occurs. This pattern of higher predictability and strong anticorrelation between O2 and stratification is robust across multiple models and datasets. In contrast, IPV at mid-latitudes has low predictability potential and its center of action differs from that of O2. In addition, the locations of extreme events or hotspots may or may not differ between the two fields, with a strong model dependency, which persists in future projections. On the one hand, these results suggest that it may be possible to monitor ocean O2 in the tropical Pacific based on a few observational sites co-located with the more abundant IPV measurements; on the other, they lead us to question the robustness of the IPV–O2 relationship in the extratropics. The proposed framework helps to characterize and interpret O2 variability in relation to physical variability and may be especially useful in the analysis of new observation-based data products derived from the BGC-Argo float array in combination with the traditional but far more abundant Argo data
Sustained growth of the Southern Ocean carbon storage in a warming climate
Abstract We investigate the mechanisms controlling the evolution of Southern Ocean carbon storage under a future climate warming scenario. A subset of Coupled Model Intercomparison Project Phase 5 models predicts that the inventory of biologically sequestered carbon south of 40°S increases about 18-34 Pg C by 2100 relative to the preindustrial condition. Sensitivity experiments with an ocean circulation and biogeochemistry model illustrates the impacts of the wind and buoyancy forcings under a warming climate. Intensified and poleward shifted westerly wind strengthens the upper overturning circulation, not only leading to an increased uptake of anthropogenic CO 2 but also releasing biologically regenerated carbon to the atmosphere. Freshening of Antarctic Surface Water causes a slowdown of the lower overturning circulation, leading to an increased Southern Ocean biological carbon storage. The rectified effect of these processes operating together is the sustained growth of the carbon storage in the Southern Ocean, even under the warming climate with a weaker global ocean carbon uptake
Porphyrin dye-sensitization of polythiophene in a conjugated polymer/TiO2 p-n hetero-junction solar cell
金沢大学工学部In the blended solid of poly(3-hexylthiophene-2,5-diyl) (P3HT) and porphyrin (TPP)/TiO2 p-n hetero-junction solar cells, a photo-induced charge transfer between P3HT and TPP accelerated the charge separation in the depletion layer formed at the P3HT + TPP/TiO2 interface, enhancing the photovoltaic properties. For the blended cell containing zinc porphyrin as TPP, the energy conversion yield of 0.26% was obtained under the illumination of solar simulated light AM1.5-100 mW/cm2
LIGHT-bgcArgo-1.0: using synthetic float capabilities in E3SMv2 to assess spatiotemporal variability in ocean physics and biogeochemistry
Since their advent over 2 decades ago, autonomous Argo floats have revolutionized the field of oceanography, and, more recently, the addition of biogeochemical and biological sensors to these floats has greatly improved our understanding of carbon, nutrient, and oxygen cycling in the ocean. While Argo floats offer unprecedented horizontal, vertical, and temporal coverage of the global ocean, uncertainties remain about whether Argo sampling frequency and density capture the true spatiotemporal variability in physical, biogeochemical, and biological properties. As the true distributions of, e.g., temperature or oxygen are unknown, these uncertainties remain difficult to address with Argo floats alone. Numerical models with synthetic observing systems offer one potential avenue to address these uncertainties. Here, we implement synthetic biogeochemical Argo floats into the Energy Exascale Earth System Model version 2 (E3SMv2), which build on the Lagrangian In Situ Global High-Performance Particle Tracking (LIGHT) module in E3SMv2 (E3SMv2-LIGHT-bgcArgo-1.0). Since the synthetic floats sample the model fields at model run time, the end user defines the sampling protocol ahead of any model simulation, including the number and distribution of synthetic floats to be deployed, their sampling frequency, and the prognostic or diagnostic model fields to be sampled. Using a 6-year proof-of-concept simulation, we illustrate the utility of the synthetic floats in different case studies. In particular, we quantify the impact of (i) sampling density on the float-derived detection of deep-ocean change in temperature or oxygen and on float-derived estimates of phytoplankton phenology, (ii) sampling frequency and sea-ice cover on float trajectory lengths and hence float-derived estimates of current velocities, and (iii) short-term variability in ecosystem stressors on estimates of their seasonal variability
Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria
The prevalence of antibiotic resistance and the decrease in novel antibiotic discovery in recent years necessitates the identification of potentially novel microbial resources to produce natural products. Ktedonobacteria, a class of deeply branched bacterial lineage in the ancient phylum Chloroflexi, are ubiquitous in terrestrial environments and characterized by their large genome size and complex life cycle. These characteristics indicate Ktedonobacteria as a potential active producer of bioactive compounds. In this study, we observed the existence of a putative “megaplasmid,” multiple copies of ribosomal RNA operons, and high ratio of hypothetical proteins with unknown functions in the class Ktedonobacteria. Furthermore, a total of 104 antiSMASH-predicted putative biosynthetic gene clusters (BGCs) for secondary metabolites with high novelty and diversity were identified in nine Ktedonobacteria genomes. Our investigation of domain composition and organization of the non-ribosomal peptide synthetase and polyketide synthase BGCs further supports the concept that class Ktedonobacteria may produce compounds structurally different from known natural products. Furthermore, screening of bioactive compounds from representative Ktedonobacteria strains resulted in the identification of broad antimicrobial activities against both Gram-positive and Gram-negative tested bacterial strains. Based on these findings, we propose the ancient, ubiquitous, and spore-forming Ktedonobacteria as a versatile and promising microbial resource for natural product discovery
Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide
The exchange of carbon dioxide between the ocean and the atmosphere tends to bring waters within the mixed layer toward equilibrium by reducing the partial pressure gradient across the air-water interface. However, the equilibration process is not instantaneous; in general, there is a lag between forcing and response. The timescale of air-sea equilibration depends on several factors involving the depth of the mixed layer, wind speed, and carbonate chemistry. We use a suite of observational data sets to generate climatological and seasonal composite maps of the air-sea equilibration timescale. The relaxation timescale exhibits considerable spatial and seasonal variations that are largely set by changes in mixed layer depth and wind speed. The net effect is dominated by the mixed layer depth; the gas exchange velocity and carbonate chemistry parameters only provide partial compensation. Broadly speaking, the adjustment timescale tends to increase with latitude. We compare the observationally derived air-sea gas exchange timescale with a model-derived surface residence time and a data-derived horizontal transport timescale, which allows us to define two nondimensional metrics of equilibration efficiency. These parameters highlight the tropics, subtropics, and northern North Atlantic as regions of inefficient air-sea equilibration where carbon anomalies are relatively likely to persist. The efficiency parameters presented here can serve as simple tools for understanding the large-scale persistence of air-sea disequilibrium of CO2 in both observations and models
HIF2α-Sp1 interaction mediates a deacetylation-dependent FVII-gene activation under hypoxic conditions in ovarian cancer cells
Hypoxia-inducible factors (HIF)-1α and HIF2α are major transcription factors required for adaptive responses to hypoxia. HIFs form a complex with aryl hydrocarbon receptor nuclear translocator (ARNT) to bind to the regulatory regions of target genes. The acetylation of histones by histone acetyltransferases (HATs) is one of the epigenetic marks associated with active chromatin. Indeed, HIFs recruit p300 HAT to hypoxia response elements (HREs) within gene regulatory regions. Here, we report an unusual HIF-mediated transcriptional activation in ovarian clear cell carcinoma (CCC). While characterizing coagulation factor VII (FVII) gene induction during hypoxic conditions, we observed that the interaction of HIF2α with Sp1, but not with ARNT, could induce transcription of FVII in a HRE-independent manner. Unexpectedly, this gene activation is associated with histone deacetylation. We found that a class II HDAC, HDAC4, is recruited with HIF2α to the FVII promoter as a co-activator, while p300 HAT negatively regulated this process. Furthermore, this mechanism can be synergistically enhanced via a deacetylation-dependent pathway when cells are simultaneously exposed to hypoxic and serum-free conditions. These results suggest the presence of a stress-responsive transcription mediated by the HIF2α/Sp1/HDAC4 network and explain how CCC shed their procoagulant activity under hypoxia
Japanese multicenter database of healthy controls for [¹²³I]FP-CIT SPECT
Purpose: The aim of this multicenter trial was to generate a [¹²³I]FP-CIT SPECT database of healthy controls from the common SPECT systems available in Japan. Methods: This study included 510 sets of SPECT data from 256 healthy controls (116 men and 140 women; age range, 30–83 years) acquired from eight different centers. Images were reconstructed without attenuation or scatter correction (NOACNOSC), with only attenuation correction using the Chang method (ChangACNOSC) or X-ray CT (CTACNOSC), and with both scatter and attenuation correction using the Chang method (ChangACSC) or X-ray CT (CTACSC). These SPECT images were analyzed using the Southampton method. The outcome measure was the specific binding ratio (SBR) in the striatum. These striatal SBRs were calibrated from prior experiments using a striatal phantom. Results: The original SBRs gradually decreased in the order of ChangACSC, CTACSC, ChangACNOSC, CTACNOSC, and NOACNOSC. The SBRs for NOACNOSC were 46% lower than those for ChangACSC. In contrast, the calibrated SBRs were almost equal under no scatter correction (NOSC) conditions. A significant effect of age was found, with an SBR decline rate of 6.3% per decade. In the 30–39 age group, SBRs were 12.2% higher in women than in men, but this increase declined with age and was absent in the 70–79 age group. Conclusions: This study provided a large-scale quantitative database of [¹²³I]FP-CIT SPECT scans from different scanners in healthy controls across a wide age range and with balanced sex representation. The phantom calibration effectively harmonizes SPECT data from different SPECT systems under NOSC conditions. The data collected in this study may serve as a reference database
- …