82 research outputs found

    Endoscopic Discectomy for Extraforaminal Lumbar Disc Herniation

    Get PDF
    Summary. The microendoscopic discectomy (MED) technique has been one of the promising surgeries for lumbar disc herniation in the last few years. The purpose of this study is to report the feasibility of a minimally invasive technique for extraforaminal lumbar disc herniation. Ten patients with extraforaminal lumbar disc herniation (one at L3-4, four at L4-5, and five at L5-S1) underwent MED using the METRx system. A tubular retractor was inserted posterolaterally adjacent to the caudal base of the transverse process at the level of the affected disc. The nerve root was carefully distinguished from its surrounding tissues, and then the herniated disc was excised. The mean length of the preoperative clinical course was 7 months. The pain in the lower extremity was relieved in all patients. The clinical results in the MED group were the same as those in the open surgery group. Endoscopic herniotomy requires much less extensive muscle dissection than open surgery. The MED technique for extraforaminal lumbar disc herniation can be performed safely and effectively. There is a learning curve to this procedure

    A novel chiral oxazolidine organocatalyst for the synthesis of an oseltamivir intermediate using a highly enantioselective Diels-Alder reaction of 1,2-dihydropyridine

    Get PDF
    Enantioselective Diels-Alder reactions of 1,2-dihydropyridines with acroleins using a novel chiral oxazolidine organocatalyst afforded chiral isoquinuclidines that is an efficient synthetic intermediate of oseltamivir, with fairly good chemical yield and excellent enantioselectivity (90%, up to >99% ee)

    Nivolumab Versus Gemcitabine or Pegylated Liposomal Doxorubicin for Patients With Platinum-Resistant Ovarian Cancer: Open-Label, Randomized Trial in Japan (NINJA)

    Get PDF
    PURPOSE: This phase III, multicenter, randomized, open-label study investigated the efficacy and safety of nivolumab versus chemotherapy (gemcitabine [GEM] or pegylated liposomal doxorubicin [PLD]) in patients with platinum-resistant ovarian cancer. MATERIALS AND METHODS: Eligible patients had platinum-resistant epithelial ovarian cancer, received ≤ 1 regimen after diagnosis of resistance, and had an Eastern Cooperative Oncology Group performance score of ≤ 1. Patients were randomly assigned 1:1 to nivolumab (240 mg once every 2 weeks [as one cycle]) or chemotherapy (GEM 1000 mg/m2 for 30 minutes [once on days 1, 8, and 15] followed by a week's rest [as one cycle], or PLD 50 mg/m2 once every 4 weeks [as one cycle]). The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), overall response rate, duration of response, and safety. RESULTS: Patients (n = 316) were randomly assigned to nivolumab (n = 157) or GEM or PLD (n = 159) between October 2015 and December 2017. Median OS was 10.1 (95% CI, 8.3 to 14.1) and 12.1 (95% CI, 9.3 to 15.3) months with nivolumab and GEM or PLD, respectively (hazard ratio, 1.0; 95% CI, 0.8 to 1.3; P = .808). Median PFS was 2.0 (95% CI, 1.9 to 2.2) and 3.8 (95% CI, 3.6 to 4.2) months with nivolumab and GEM or PLD, respectively (hazard ratio, 1.5; 95% CI, 1.2 to 1.9; P = .002). There was no statistical difference in overall response rate between groups (7.6% v 13.2%; odds ratio, 0.6; 95% CI, 0.2 to 1.3; P = .191). Median duration of response was numerically longer with nivolumab than GEM or PLD (18.7 v 7.4 months). Fewer treatment-related adverse events were observed with nivolumab versus GEM or PLD (61.5% v 98.1%), with no additional or new safety risks. CONCLUSION: Although well-tolerated, nivolumab did not improve OS and showed worse PFS compared with GEM or PLD in patients with platinum-resistant ovarian cancer

    Black carbon and inorganic aerosols in Arctic snowpack

    Get PDF
    Key Points: • First ever measurements with a high‐accuracy single‐particle soot photometer of black carbon (BC) concentrations in Arctic snowpack • Topography and BC emission flux strongly influenced latitudinal variations of mass concentrations and size distributions of BC • Measured BC mass concentrations 2–25 times lower than previously reported show the importance of revalidating climate modelsBlack carbon (BC) deposited on snow lowers its albedo, potentially contributing to warming in the Arctic. Atmospheric distributions of BC and inorganic aerosols, which contribute directly and indirectly to radiative forcing, are also greatly influenced by depositions. To quantify these effects, accurate measurement of the spatial distributions of BC and ionic species representative of inorganic aerosols (ionic species hereafter) in snowpack in various regions of the Arctic is needed, but few such measurements are available. We measured mass concentrations of size-resolved BC (CMBC) and ionic species in snowpack by using a single-particle soot photometer and ion chromatography, respectively, over Finland, Alaska, Siberia, Greenland, and Spitsbergen during early spring in 2012–2016. Total BC mass deposited per unit area (DEPMBC) during snow accumulation periods was derived from CMBC and snow water equivalent (SWE). Our analyses showed that the spatial distributions of anthropogenic BC emission flux, total precipitable water, and topography strongly influenced latitudinal variations of CMBC, BC size distributions, SWE, and DEPMBC. The average size distributions of BC in Arctic snowpack shifted to smaller sizes with decreasing CMBC due to an increase in the removal efficiency of larger BC particles during transport from major sources. Our measurements of CMBC were lower by a factor of ~13 than previous measurements made with an Integrating Sphere/Integrating Sandwich spectrophotometer due mainly to interference from coexisting non-BC particles such as mineral dust. The SP2 data presented here will be useful for constraining climate models that estimate the effects of BC on the Arctic climate.Plain Language Summary Black carbon (BC) particles, commonly known as soot, are emitted from incomplete combustion of fossil fuels and biomass. They efficiently absorb solar radiation and thus heat the atmosphere. BC particles emitted at midlatitudes and in the Arctic are deposited onto snow in the Arctic, accelerating snowmelt in early spring by absorbing solar radiation. These processes contribute to warming in the Arctic. Calculations of this warming effect by using numerical models need to be validated by comparison with observed BC concentrations in snowpack. However, there are very few accurate records of concentrations of BC in snow because of technical difficulties in making these measurements. We developed a new laser-induced incandescence technique to measure BC concentrations in snowpack and applied it for the first time in six Arctic regions (Finland, Alaska, North and South Siberia, Greenland, and Spitsbergen). The BC concentrations we measured were highest in Finland and South Siberia, which are closer to large anthropogenic BC sources than the other regions, where our measured BC concentrations were much lower. On average, our BC concentrations were much lower than those previously measured by different techniques. Therefore, previous comparisons of modeled and observed BC concentrations need to be re-evaluated using the present data
    corecore