16 research outputs found

    The Shigella OspC3 Effector Inhibits Caspase-4, Antagonizes Inflammatory Cell Death, and Promotes Epithelial Infection

    Get PDF
    SummaryCaspase-mediated inflammatory cell death acts as an intrinsic defense mechanism against infection. Bacterial pathogens deploy countermeasures against inflammatory cell death, but the mechanisms by which they do this remain largely unclear. In a screen for Shigella flexneri effectors that regulate cell death during infection, we discovered that Shigella infection induced acute inflammatory, caspase-4-dependent epithelial cell death, which is counteracted by the bacterial OspC3 effector. OspC3 interacts with the caspase-4-p19 subunit and inhibits its activation by preventing caspase-4-p19 and caspase-4-p10 heterodimerization by depositing the conserved OspC3 X1-Y-X2-D-X3 motif at the putative catalytic pocket of caspase-4. Infection of guinea pigs with a Shigella ospC3-deficient mutant resulted in enhanced inflammatory cell death and associated symptoms, correlating with decreased bacterial burdens. Salmonella Typhimurium and enteropathogenic Escherichia coli infection also induced caspase-4-dependent epithelial death. These findings highlight the importance of caspase-4-dependent innate immune responses and demonstrate that Shigella delivers a caspase-4-specific inhibitor to delay epithelial cell death and promote infection

    Cell death and infection: A double-edged sword for host and pathogen survival

    Get PDF
    Host cell death is an intrinsic immune defense mechanism in response to microbial infection. However, bacterial pathogens use many strategies to manipulate the host cell death and survival pathways to enhance their replication and survival. This manipulation is quite intricate, with pathogens often suppressing cell death to allow replication and then promoting it for dissemination. Frequently, these effects are exerted through modulation of the mitochondrial pro-death, NF-ÎșB–dependent pro-survival, and inflammasome-dependent host cell death pathways during infection. Understanding the molecular details by which bacterial pathogens manipulate cell death pathways will provide insight into new therapeutic approaches to control infection

    Group A Streptococcus establishes pharynx infection by degrading the deoxyribonucleic acid of neutrophil extracellular traps

    No full text
    Abstract Group A Streptococcus (GAS) secretes deoxyribonucleases and evades neutrophil extracellular killing by degrading neutrophil extracellular traps (NETs). However, limited information is currently available on the interaction between GAS and NETs in the pathogenicity of GAS pharyngitis. In this study, we modified a mouse model of GAS pharyngitis and revealed an essential role for DNase in this model. After intranasal infection, the nasal mucosa was markedly damaged near the nasal cavity, at which GAS was surrounded by neutrophils. When neutrophils were depleted from mice, GAS colonization and damage to the nasal mucosa were significantly decreased. Furthermore, mice infected with deoxyribonuclease knockout GAS mutants (∆spd, ∆endA, and ∆sdaD2) survived significantly better than those infected with wild-type GAS. In addition, the supernatants of digested NETs enhanced GAS-induced cell death in vitro. Collectively, these results indicate that NET degradation products may contribute to the establishment of pharyngeal infection caused by GAS

    A unique high natural background radiation area – Dose assessment and Perspectives

    No full text
    The biological effects of low dose-rate radiation exposures on humans remains unknown. In fact, the Japanese nation still struggles with this issue after the Fukushima Dai-ichi Nuclear Power Plant accident. Recently, we have found a unique area in Indonesia where naturally high radiation levels are present, resulting in chronic low dose-rate radiation exposures. We aimed to estimate the comprehensive dose due to internal and external exposures at the particularly high natural radiation area, and to discuss the enhancement mechanism of radon. A car-borne survey was conducted to estimate the external doses from terrestrial radiation. Indoor radon measurements were made in 47 dwellings over three to five months, covering the two typical seasons, to estimate the internal doses. Atmospheric radon gases were simultaneously collected at several heights to evaluate the vertical distribution. The absorbed dose rates in air in the study area vary widely between 50 nGy h-1 and 1109 nGy h-1. Indoor radon concentrations ranged from 124 Bq m-3 to 1015 Bq m-3. That is, the indoor radon concentrations measured exceed the reference levels of 100 Bqm-3 recommended by the World Health Organization. Furthermore, the outdoor radon concentrations measured were comparable to the high indoor radon concentrations. The annual effective dose due to external and internal exposures in the study area was estimated to be 27 mSv using the median values. It was found that many residents are receiving radiation exposure from natural radionuclides over the dose limit for occupational exposure to radiation workers. This enhanced outdoor radon concentration might be as a result of the stable atmospheric conditions generated at an exceptionally low altitude. Our findings suggest that this area provides a unique opportunity to conduct an epidemiological study related to health effects due to chronic low dose-rate radiation exposure
    corecore