1,474 research outputs found

    On the Globular Cluster IMF below 1 Solar Mass

    Full text link
    (Abridged) Accurate luminosity functions (LF) for a dozen globular clusters have now been measured at or just beyond their half-light radius using HST. They span almost the entire cluster main sequence below ~ 0.75 Msolar. All these clusters exhibit LF that rise continuously from an absolute I magnitude M_I ~ 6 to a peak at M_I ~ 8.5-9 and then drop with increasing M_I. Transformation of the LF into mass functions (MF) by means of the most recent mass luminosity relations that are consistent with all presently available data on the physical properties of low mass, low metallicity stars shows that all the LF observed so far can be obtained from MF having the shape of a log-normal distribution with characteristic mass m_c=0.33 +/- 0.03 Msolar and standard deviation sigma = 1.81 +/- 0.19. After correction for the effects of mass segregation, the variation of the ratio of the number of higher to lower mass stars with cluster mass or any simple orbital parameter or the expected time to disruption recently computed for these clusters shows no statistically significant trend over a range of this last parameter of more than a factor of 100. We conclude that the global MF of these clusters have not been measurably modified by evaporation and tidal interactions with the Galaxy and, thus, should reflect the initial distribution of stellar masses. Since the log-normal function that we find is also very similar to the one obtained independently for much younger clusters and to the form expected theoretically, the implication seems to be unavoidable that it represents the true stellar IMF for this type of stars in this mass range.Comment: Accepted for publication in The Astrophysical Journal. Contains 28 pages with 6 figure

    Universal features of correlated bursty behaviour

    Get PDF
    Inhomogeneous temporal processes, like those appearing in human communications, neuron spike trains, and seismic signals, consist of high-activity bursty intervals alternating with long low-activity periods. In recent studies such bursty behavior has been characterized by a fat-tailed inter-event time distribution, while temporal correlations were measured by the autocorrelation function. However, these characteristic functions are not capable to fully characterize temporally correlated heterogenous behavior. Here we show that the distribution of the number of events in a bursty period serves as a good indicator of the dependencies, leading to the universal observation of power-law distribution in a broad class of phenomena. We find that the correlations in these quite different systems can be commonly interpreted by memory effects and described by a simple phenomenological model, which displays temporal behavior qualitatively similar to that in real systems

    Evolution of a unique predatory feeding apparatus: functional anatomy, development and a genetic locus for jaw laterality in Lake Tanganyika scale-eating cichlids

    Get PDF
    Background While bilaterality is a defining characteristic of triploblastic animals, several assemblages have managed to break this symmetry in order to exploit the adaptive peaks garnered through the lateralization of behaviour or morphology. One striking example of an evolved asymmetry in vertebrates comes from a group of scale-eating cichlid fishes from Lake Tanganyika. Members of the Perissodini tribe of cichlid fishes have evolved dental and craniofacial asymmetries in order to more effectively remove scales from the left or right flanks of prey. Here we examine the evolution and development of craniofacial morphology and laterality among Lake Tanganyika scale-eating cichlids. Results Using both geometric and traditional morphometric methods we found that the craniofacial evolution in the Perissodini involved discrete shifts in skeletal anatomy that reflect differences in habitat preference and predation strategies. Further, we show that the evolutionary history of the Perissodini is characterized by an accentuation of craniofacial laterality such that certain taxa show elaborate sided differences in craniofacial shape consistent with the sub-partitioning of function between sides of the head during attacks. Craniofacial laterality in the scale-eating specialist Perissodus microlepis was found to be evident early in development and exhibited a unimodal distribution, which is contrary to the adult condition where jaw laterality has been described as a discrete, bimodal antisymmetry. Finally, using linkage and association analyses we identified a conserved locus for jaw handedness that segregates among East African cichlids. Conclusions We suggest that, during the evolution of the Perissodini, selection has accentuated a latent, genetically determined handedness of the craniofacial skeleton, enabling the evolution of jaw asymmetries in order to increase predation success. Continued work on the developmental genetic basis of laterality in the Perissodini will facilitate a better understanding of the evolution of this unique group of fishes, as well as of left-right axis determination among vertebrates in general

    Synthesis of Tin Nitride SnxNyNanowires by Chemical Vapour Deposition

    Get PDF
    Tin nitride (SnxNy) nanowires have been grown for the first time by chemical vapour deposition on n-type Si(111) and in particular by nitridation of Sn containing NH4Cl at 450 °C under a steady flow of NH3. The SnxNynanowires have an average diameter of 200 nm and lengths ≥5 μm and were grown on Si(111) coated with a few nm’s of Au. Nitridation of Sn alone, under a flow of NH3is not effective and leads to the deposition of Sn droplets on the Au/Si(111) surface which impedes one-dimensional growth over a wide temperature range i.e. 300–800 °C. This was overcome by the addition of ammonium chloride (NH4Cl) which undergoes sublimation at 338 °C thereby releasing NH3and HCl which act as dispersants thereby enhancing the vapour pressure of Sn and the one-dimensional growth of SnxNynanowires. In addition to the action of dispersion, Sn reacts with HCl giving SnCl2which in turn reacts with NH3leading to the formation of SnxNyNWs. A first estimate of the band-gap of the SnxNynanowires grown on Si(111) was obtained from optical reflection measurements and found to be ≈2.6 eV. Finally, intricate assemblies of nanowires were also obtained at lower growth temperatures

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Natural genetic variation in fluctuating asymmetry of wing shape in Drosophila melanogaster

    Get PDF
    Fluctuating asymmetry (FA), defined as random deviation from perfect symmetry, has been used to assay the inability of individuals to buffer their developmental processes from environmental perturbations (i.e., developmental instability). In this study, we aimed to characterize the natural genetic variation in FA of wing shape in Drosophila melanogaster, collected from across the Japanese archipelago. We quantified wing shapes at whole wing and partial wing component levels and evaluated their mean and FA. We also estimated the heritability of the mean and FA of these traits. We found significant natural genetic variation in all the mean wing traits and in FA of one of the partial wing components. Heritability estimates for mean wing shapes were significant in two and four out of five wing traits in males and females, respectively. On the contrary, heritability estimates for FA were low and not significant. This is a novel study of natural genetic variation in FA of wing shape. Our findings suggest that partial wing components behave as distinct units of selection for FA, and local adaptation of the mechanisms to stabilize developmental processes occur in nature

    The Spatial Heterogeneity between Japanese Encephalitis Incidence Distribution and Environmental Variables in Nepal

    Get PDF
    To identify potential environmental drivers of Japanese Encephalitis virus (JE) transmission in Nepal, we conducted an ecological study to determine the spatial association between 2005 Nepal JE incidence, and climate, agricultural, and land-cover variables at district level.District-level data on JE cases were examined using Local Indicators of Spatial Association (LISA) analysis to identify spatial clusters from 2004 to 2008 and 2005 data was used to fit a spatial lag regression model with climate, agriculture and land-cover variables.Prior to 2006, there was a single large cluster of JE cases located in the Far-West and Mid-West terai regions of Nepal. After 2005, the distribution of JE cases in Nepal shifted with clusters found in the central hill areas. JE incidence during the 2005 epidemic had a stronger association with May mean monthly temperature and April mean monthly total precipitation compared to mean annual temperature and precipitation. A parsimonious spatial lag regression model revealed, 1) a significant negative relationship between JE incidence and April precipitation, 2) a significant positive relationship between JE incidence and percentage of irrigated land 3) a non-significant negative relationship between JE incidence and percentage of grassland cover, and 4) a unimodal non-significant relationship between JE Incidence and pig-to-human ratio.JE cases clustered in the terai prior to 2006 where it seemed to shift to the Kathmandu region in subsequent years. The spatial pattern of JE cases during the 2005 epidemic in Nepal was significantly associated with low precipitation and the percentage of irrigated land. Despite the availability of an effective vaccine, it is still important to understand environmental drivers of JEV transmission since the enzootic cycle of JEV transmission is not likely to be totally interrupted. Understanding the spatial dynamics of JE risk factors may be useful in providing important information to the Nepal immunization program
    corecore