251 research outputs found

    Visual SLAM algorithms: a survey from 2010 to 2016

    Get PDF
    SLAM is an abbreviation for simultaneous localization and mapping, which is a technique for estimating sensor motion and reconstructing structure in an unknown environment. Especially, Simultaneous Localization and Mapping (SLAM) using cameras is referred to as visual SLAM (vSLAM) because it is based on visual information only. vSLAM can be used as a fundamental technology for various types of applications and has been discussed in the field of computer vision, augmented reality, and robotics in the literature. This paper aims to categorize and summarize recent vSLAM algorithms proposed in different research communities from both technical and historical points of views. Especially, we focus on vSLAM algorithms proposed mainly from 2010 to 2016 because major advance occurred in that period. The technical categories are summarized as follows: feature-based, direct, and RGB-D camera-based approaches

    Production of overdense plasmas by launching 2,45 GHz electron cyclotron waves in a helical device

    Full text link
    For production of low temperature plasmas with low collisionality, 2.45GHz microwave power up to 20kW is injected perpendicularly to the toroidal field at very low toroidal field BtComment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Impaired response of hypoxic sensor protein HIF-1 alpha and its downstream proteins in the spinal motor neurons of ALS model mice

    Get PDF
    We have recently reported spinal blood flow-metabolism uncoupling in an amyotrophic lateral sclerosis (ALS) animal model using Cu/Zn-superoxide dismutase 1 (SOD1)-transgenic (Tg) mice, suggesting a relative hypoxia in the spinal cord. However, the hypoxic stress sensor pathway has not been well studied in ALS. Here, we examined temporal and spatial changes of the hypoxic stress sensor proteins HIF-1 alpha and its downstream proteins (VEGF, HO-1, and EPO) during the normcodccourse of motor neuron (MN) degeneration in the spinal cord of these ALS model mice. We found that HIP-1 alpha protein expression progressively increased both in the anterior large MNs and the surrounding glial cells in Tg mice from early symptomatic 14 week (W) and end stage 18W. Double immunofluorescence analysis revealed that HIP-1 alpha, plus GFAP and Iba-1 double-positive surrounding glial cells, progressively increased from 14 W to 18 W, although the immunohistochemistiy in large MNs did not change. Expression levels of VEGF and HO-1 also showed a progressive increase but were significant only in the surrounding glial cells at 18W. In contrast, EPO protein expression was decreased in the surrounding glial cells of Tg mice at 18W. Because HIF1-alpha serves as an important mediator of the hypoxic response, these findings indicate that MNs lack the neuroprotective response to hypoxic stress through the HIF-1 alpha system, which could be an important mechanism of neurodegeneration in ALS

    Experimental Simulation of High Temperature Plasma Transport Using Almost Dimensionally Similar Cold Plasmas in the Compact Helical System

    Get PDF
    In the Compact Helical System (CHS), experimental simulation of high temperature plasma transport is attempted by using cold plasma having similar dimensionless parameters such as electron-ion collision frequency normalized by bounce frequency v*ei, averaged toroidal beta value βt and the normalized gyro radius ρs*. The cold plasma is produced by 2.45 GHz electron cyclotron waves at very low toroidal field less than 0.1 T, and has v*ei ~ 0.05?1, βt < 0.02 % and ρs* ~ 0.02?0.05. The radial profiles of fluctuation amplitude have similarity to those in a high temperature plasma. In the cold plasma with low v*ei < 0.1, internal transport barrier is clearly formed in electron density and temperature profiles when the radial electric field rapidly evolves to positive value

    Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos

    Get PDF
    動く分子と動かない分子が協調して、安定した位置情報を素早く作り出す. 京都大学プレスリリース. 2021-06-04.The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modeling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations
    corecore