research

Experimental Simulation of High Temperature Plasma Transport Using Almost Dimensionally Similar Cold Plasmas in the Compact Helical System

Abstract

In the Compact Helical System (CHS), experimental simulation of high temperature plasma transport is attempted by using cold plasma having similar dimensionless parameters such as electron-ion collision frequency normalized by bounce frequency v*ei, averaged toroidal beta value βt and the normalized gyro radius ρs*. The cold plasma is produced by 2.45 GHz electron cyclotron waves at very low toroidal field less than 0.1 T, and has v*ei ~ 0.05?1, βt < 0.02 % and ρs* ~ 0.02?0.05. The radial profiles of fluctuation amplitude have similarity to those in a high temperature plasma. In the cold plasma with low v*ei < 0.1, internal transport barrier is clearly formed in electron density and temperature profiles when the radial electric field rapidly evolves to positive value

    Similar works