4 research outputs found

    Acute myeloid leukemia in the vascular niche

    No full text
    The greatest challenge in treating acute myeloid leukemia (AML) is refractory disease. With approximately 60-80% of AML patients dying of relapsed disease, there is an urgent need to define and target mechanisms of drug resistance. Unfortunately, targeting cell-intrinsic resistance has failed to improve clinical outcomes in AML Emerging data show that cell-extrinsic factors in the bone marrow microenvironment protect and support AML cells. The vascular niche, in particular, regulates AML cell survival and cell cycling by both paracrine secretion and adhesive contact with endothelial cells. Moreover, AML cells can functionally integrate within vascular endothelia, undergo quiescence, and resist cytotoxic chemotherapy. Together, these findings support the notion of blood vessels as sanctuary sites for AML Therefore, vascular targeting agents may serve to remit AML. Several early phase clinical trials have tested anti-angiogenic agents, leukemia mobilizing agents, and vascular disrupting agents in AML patients. In general, these agents can be safely administered to AML patients and cardiovascular side effects were reported. Response rates to vascular targeting agents in AML have been modest; however, a majority of vascular targeting trials in AML are monotherapy in design and indiscriminate in patient recruitment. When considering the chemosensitizing effects of targeting the microenvironment, there is a strong rationale to build upon these early phase clinical trials and initiate phase IB/II trials of combination therapy where vascular targeting agents are positioned as priming agents for cytotoxic chemotherapy. (C) 2015 Elsevier Ireland Ltd. All rights reserved

    Comparison of molecular subtype distribution in triple-negative inflammatory and non-inflammatory breast cancers

    No full text
    International audienceIntroduction: Because of its high rate of metastasis, inflammatory breast cancer (IBC) has a poor prognosis compared with non-inflammatory types of breast cancer (non-IBC). In a recent study, Lehmann and colleagues identified seven subtypes of triple-negative breast cancer (TNBC). We hypothesized that the distribution of TNBC subtypes differs between TN-IBC and TN-non-IBC. We determined the subtypes and compared clinical outcomes by subtype in TN-IBC and TN-non-IBC patients.Methods: We determined TNBC subtypes in a TNBC cohort from the World IBC Consortium for which IBC status was known (39 cases of TN-IBC; 49 cases of TN-non-IBC). We then determined the associations between TNBC subtypes and IBC status and compared clinical outcomes between TNBC subtypes.Results: We found the seven subtypes exist in both TN-IBC and TN-non-IBC. We found no association between TNBC subtype and IBC status (P = 0.47). TNBC subtype did not predict recurrence-free survival. IBC status was not a significant predictor of recurrence-free or overall survival in the TNBC cohort.Conclusions: Our data show that, like TN-non-IBC, TN-IBC is a heterogeneous disease. Although clinical characteristics differ significantly between IBC and non-IBC, no unique IBC-specific TNBC subtypes were identified by mRNA gene-expression profiles of the tumor. Studies are needed to identify the subtle molecular or microenvironmental differences that contribute to the differing clinical behaviors between TN-IBC and TN-non-IBC

    Comparison of molecular subtype distribution in triple-negative inflammatory and non-inflammatory breast cancers

    No full text
    INTRODUCTION: Because of its high rate of metastasis, inflammatory breast cancer (IBC) has a poor prognosis compared with non-inflammatory types of breast cancer (non-IBC). In a recent study, Lehmann and colleagues identified seven subtypes of triple-negative breast cancer (TNBC). We hypothesized that the distribution of TNBC subtypes differs between TN-IBC and TN-non-IBC. We determined the subtypes and compared clinical outcomes by subtype in TN-IBC and TN-non-IBC patients. METHODS: We determined TNBC subtypes in a TNBC cohort from the World IBC Consortium for which IBC status was known (39 cases of TN-IBC; 49 cases of TN-non-IBC). We then determined the associations between TNBC subtypes and IBC status and compared clinical outcomes between TNBC subtypes. RESULTS: We found the seven subtypes exist in both TN-IBC and TN-non-IBC. We found no association between TNBC subtype and IBC status (P = 0.47). TNBC subtype did not predict recurrence-free survival. IBC status was not a significant predictor of recurrence-free or overall survival in the TNBC cohort. CONCLUSIONS: Our data show that, like TN-non-IBC, TN-IBC is a heterogeneous disease. Although clinical characteristics differ significantly between IBC and non-IBC, no unique IBC-specific TNBC subtypes were identified by mRNA gene-expression profiles of the tumor. Studies are needed to identify the subtle molecular or microenvironmental differences that contribute to the differing clinical behaviors between TN-IBC and TN-non-IBC
    corecore