85 research outputs found

    Intracellular mechanisms underlying the nicotinic enhancement of LTP in the rat dentate gyrus

    Get PDF
    We have previously shown that activation of nicotinic acetylcholine receptors (nAChRs) enhanced long-term potentiation (LTP) in the rat dentate gyrus in vitro via activation of α7 nAChR. In the present studies, mechanisms underlying the acute and chronic nicotinic enhancement of LTP were examined. In particular, the involvement of activation of intracellular kinases was examined using selective kinase antagonists, and the effects of enhancing cholinergic function with positive allosteric modulators of the α7 nAChR and with acetylcholinesterase (AChE) inhibitors were also investigated. Activation of extracellular signal-regulated kinase (ERK) and cAMP-dependent protein kinase (PKA) was found to be involved in the induction of the acute nicotinic enhancement of LTP, although not control LTP. In contrast, activation of the tyrosine kinase Src, Ca2+-calmodulin-dependent protein kinase II, Janus kinase 2 and p38 mitogen-activated protein kinase was not involved in the acute nicotinic enhancement of LTP, although Src activation was necessary for control LTP. Moreover, activation of phosphoinositide 3-kinase was involved in the acute nicotinic enhancement of LTP to a much lesser extent than in control LTP. Chronic nicotine enhancement of LTP was found to be dependent on PKA, ERK and Src kinases. Acute nicotinic enhancement of LTP was occluded by chronic nicotine treatment. The positive allosteric modulator PNU-120596 was found to strongly reduce the threshold for nicotinic enhancement of LTP, an affect mediated via the α7 nAChR as it was blocked by the selective antagonist methyllycaconitine. The AChE inhibitors tacrine and physostigmine enhanced control LTP

    Donepezil, Anti-Alzheimer's Disease Drug, Prevents Cardiac Rupture during Acute Phase of Myocardial Infarction in Mice

    Get PDF
    Background: We have previously demonstrated that the chronic intervention in the cholinergic system by donepezil, an acetylcholinesterase inhibitor, plays a beneficial role in suppressing long-term cardiac remodeling after myocardial infarction (MI). In comparison with such a chronic effect, however, the acute effect of donepezil during an acute phase of MI remains unclear. Noticing recent findings of a cholinergic mechanism for anti-inflammatory actions, we tested the hypothesis that donepezil attenuates an acute inflammatory tissue injury following MI. Methods and Results: In isolated and activated macrophages, donepezil significantly reduced intra- and extracellular matrix metalloproteinase-9 (MMP-9). In mice with MI, despite the comparable values of heart rate and blood pressure, the donepezil-treated group showed a significantly lower incidence of cardiac rupture than the untreated group during the acute phase of MI. Immunohistochemistry revealed that MMP-9 was localized at the infarct area where a large number of inflammatory cells including macrophages infiltrated, and the expression and the enzymatic activity of MMP-9 at the left ventricular infarct area was significantly reduced in the donepezil-treated group. Conclusion: The present study suggests that donepezil inhibits the MMP-9-related acute inflammatory tissue injury in the infarcted myocardium, thereby reduces the risk of left ventricular free wall rupture during the acute phase of MI

    Heme oxygenase-1 contributes to pathology associated with thrombin-induced striatal and cortical injury in organotypic slice culture

    Get PDF
    The blood coagulation factor thrombin that leaks from ruptured vessels initiates brain tissue damage after intracerebral hemorrhage. We have recently shown that mitogen-activated protein kinases (MAPKs) activated by thrombin exacerbate hemorrhagic brain injury via supporting survival of neuropathic microglia. Here, we investigated whether induction of heme oxygenase (HO)-1 is involved in these events. Zinc protoporphyrin IX (ZnPP IX), a HO-1 inhibitor, attenuated thrombin-induced injury of cortical cells in a concentration-dependent manner (0.3-3 microM) and tended to inhibit shrinkage of the striatal tissue at 0.3 microM. HO-1 expression was induced by thrombin in microglia and astrocytes in both the cortex and the striatum. The increase of HO-1 protein was suppressed by a p38 MAPK inhibitor SB203580, and early activation of p38 MAPK after thrombin treatment was observed in neurons and microglia in the striatum. Notably, concomitant application of a low concentration (0.3 microM) of ZnPP IX with thrombin induced apoptotic cell death in striatal microglia and significantly decreased the number of activated microglia in the striatal region. On the other hand, a carbon monoxide releaser reversed the protective effect of ZnPP IX on thrombin-induced injury of cortical cells. Overall, these results suggest that p38 MAPK-dependent induction of HO-1 supports survival of striatal microglia during thrombin insults. Thrombin-induced cortical injury may be also regulated by the expression of HO-1 and the resultant production of heme degradation products such as carbon monoxide

    Haloperidol, spiperone, pimozide and aripiprazole reduce intracellular dopamine content in PC12 cells and rat mesencephalic cultures: Implication of inhibition of vesicular transport.

    Get PDF
    Accumulating evidence suggests that antipsychotics affect dopamine release from dopaminergic neurons, but the precise mechanisms are not fully understood. Besides, there are few studies on the effects of antipsychotics on intracellular dopamine content. In this study, the effects of 8 antipsychotics on dopamine release and intracellular dopamine content in PC12 cells were investigated. Pretreatment with haloperidol, spiperone, pimozide, aripiprazole and risperidone markedly inhibited high potassium-evoked dopamine release. By contrast, pretreatment with chlorpromazine slightly increased high potassium-evoked dopamine release, while pretreatment with sulpiride and olanzapine had no effect. Haloperidol, spiperone, pimozide, chlorpromazine, aripiprazole and olanzapine evoked dopamine release, while sulpiride and risperidone had no effect. In addition, haloperidol, spiperone, pimozide, aripiprazole and risperidone reduced intracellular dopamine content in a concentration-dependent manner. These results suggest that the reduction in high potassium-evoked dopamine release by pretreatment with antipsychotics results from the reduction in vesicular dopamine content. Treatment with the 8 antipsychotics did not affect the expression of total or phosphorylated tyrosine hydroxylase. Instead, haloperidol, spiperone, pimozide and aripiprazole as well as reserpine transiently increased extracellular levels of dopamine metabolites. In addition, haloperidol, spiperone, pimozide, aripiprazole and risperidone reduced vesicular [3H]dopamine transport. These results suggest that the inhibition of vesicular dopamine transport by haloperidol, spiperone, pimozide and aripiprazole results in a reduction in vesicular dopamine content

    Protective effect of aripiprazole against glutamate cytotoxicity in dopaminergic neurons of rat mesencephalic cultures.

    Get PDF
    Aripiprazole, a dopamine D(2) receptor partial agonist, is used to treat schizophrenia. Although aripiprazole has been reported to protect non-dopaminergic neurons, its effect on dopaminergic neurons has yet to be investigated. In the present study, we examined whether aripiprazole protected dopaminergic neurons against glutamate-induced cytotoxicity in rat mesencephalic cultures. Pretreatment with aripiprazole protected dopaminergic neurons in a concentration-dependent manner. The neuroprotective effect was not attenuated by sulpiride, a dopamine D(2) receptor antagonist, suggesting that the effect is independent of dopamine D(2) receptors. Aripiprazole reduced intracellular dopamine content in a concentration-dependent manner. In addition, its neuroprotective effect was partially inhibited when dopamine was added. These results suggest that aripiprazole protects dopaminergic neurons against glutamate cytotoxicity partly by reducing intracellular dopamine content

    Isolation, identification, and biological evaluation of Nrf2-ARE activator from the leaves of green perilla (Perilla frutescens var. crispa f. viridis)

    Get PDF
    青ジソから老化やメタボリックシンドローム予防に有望な生体内抗酸化力を高める成分を発見. 京都大学プレスリリース. 2012-08-06.The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is a cellular defense system against oxidative stress. Activation of this pathway increases expression of antioxidant enzymes. Epidemiological studies have demonstrated that the consumption of fruits and vegetables is associated with reduced risk of contracting a variety of human diseases. The aim of this study is to find Nrf2-ARE activators in dietary fruits and vegetables. We first attempted to compare the potency of ARE activation in six fruit and six vegetables extracts. Green perilla (Perilla frutescens var. crispa f. viridis) extract exhibited high ARE activity. We isolated the active fraction from green perilla extract through bioactivity-guided fractionation. Based on nuclear magnetic resonance and mass spectrometric analysis, the active ingredient responsible for the ARE activity was identified as 2', 3'-dihydroxy-4', 6'-dimethoxychalcone (DDC). DDC induced the expression of antioxidant enzymes, such as γ-glutamylcysteine synthetase (γ-GCS), NAD(P)H: quinone oxidoreductase-1 (NQO1), and heme oxygenase-1. DDC inhibited the formation of intracellular reactive oxygen species and the cytotoxicity induced by 6-hydroxydopamine. Inhibition of the p38 mitogen-activated protein kinase pathway abolished ARE activation, the induction of γ-GCS and NQO1, and the cytoprotective effect brought about by DDC. Thus, this study demonstrated that DDC contained in green perilla enhanced cellular resistance to oxidative damage through activation of the Nrf2-ARE pathway

    Reconstruction and quantitative evaluation of dopaminergic innervation of striatal neurons in dissociated primary cultures

    Get PDF
    Repairing the nigrostriatal pathway is expected to become a future treatment strategy for Parkinson disease. Our aim is to establish an in vitro model for the quantitative analysis of the nigrostriatal projections of dopaminergic neurons using primary dissociated neruons. To form the mesencephalic cell region, mesencephalic cells derived from rat embryos were plated within an isolation wall, which was removed after cell adhesion to the coverslip. After incubation for 11 days, the dopaminergic neurites extending to the outside of the mesencephalic cell region were mainly axons. Treatment with glial cell line-derived neurotrophic factor for 11 days significantly promoted the outgrowth of dopaminergic axons from the mesencephalic cell region in a concentration-dependent manner. When striatal cells were plated outside the mesencephalic cell region, dopaminergic neurites were remarkably extended to the striatal cell region. Moreover, immunocytochemistry for tyrosine hydroxylase and synaptophysin revealed that dopaminergic axons formed synapses with striatal neurons. By contrast, spinal cells did not increase dopaminergic neurite outgrowth. These results indicate that the present method is valuable for evaluating nigrostriatal projections in vitro
    corecore