24 research outputs found

    16S rRNA Phylogenetic Investigation of the Candidate Division “Korarchaeota”

    No full text
    The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity

    Autonomous year-round sampling and sensing to explore the physical and biological habitability of permanently ice-covered antarctic lakes

    No full text
    © 2014, Asociacion Geologica Argentina. All rights reserved. The lakes of the McMurdo Dry Valleys, Antarctica, are some of the only systems on our planet that are perennially ice-covered and support year-round metabolism. As such, these ecosystems can provide important information on conditions and life in polar regions on Earth and on other icy worlds in our solar system.Working in these extreme environments of the Dry Valleys poses many challenges, particularly with respect to data collection during dark winter months when logistical constraints make fieldwork difficult. In this paper, we describe the motivation, design, and challenges for this recently deployed instrumentation in Lake Bonney, a lake that has been the subject of summer research efforts for more than 40 years. The instrumentation deployed includes autonomous water, phytoplankton, and sediment samplers as well as cable-mounted profiling platforms with dissolved gas and fluorometry sensors. Data obtained from these instruments will allow us, for the first time, to define the habitability of this environment during the polar night. We include lessons learned during deployment and recommendations for effective instrument operation in these extreme conditions

    Novel, deep-branching heterotrophic bacterial populations recovered from thermal spring metagenomes

    Get PDF
    Thermal spring ecosystems are a valuable resource for the discovery of novel hyperthermophilic Bacteria and Archaea, and harbor deeply-branching lineages that provide insight regarding the nature of early microbial life. We characterized bacterial populations in two circumneutral (pH ~ 8) Yellowstone National Park thermal (T ~ 80 oC) spring filamentous ‘streamer’ communities using random metagenomic DNA sequence to investigate the metabolic potential of these novel populations. Four de novo assemblies representing three abundant, deeply-branching bacterial phylotypes were recovered. Analysis of conserved phylogenetic marker genes indicated that two of the phylotypes represent separate groups of an uncharacterized phylum (for which we propose the candidate phylum name ‘Pyropristinus’). The third new phylotype falls within the proposed Calescamantes phylum. Metabolic reconstructions of the 'Pyropristinus' and Calescamantes populations showed that these organisms appear to be chemoorganoheterotrophs, and have the genomic potential for aerobic respiration and oxidative phosphorylation via archaeal-like V-type, and bacterial F-type ATPases, respectively. A survey of similar phylotypes (> 97% nt identity) within 16S rRNA gene datasets suggest that the newly described organisms are restricted to terrestrial thermal springs ranging from 70 - 90 oC and pH values of ~ 7 - 9. The characterization of these lineages is important for understanding the diversity of deeply-branching bacterial phyla, and their functional role in high-temperature circumneutral ‘streamer’ communities

    Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale

    Get PDF
    <div><p>Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between abiotic characteristics and soil bacteria in this unique, microbially dominated environment, and to test the scale dependence of these relationships in a low complexity ecosystem. Samples were collected from dry mineral soils associated with snow patches, which are a significant source of water in this desert environment, at six sites located in the major basins of the Taylor and Wright Valleys. Samples were analyzed for a suite of characteristics including soil moisture, pH, electrical conductivity, soil organic matter, major nutrients and ions, microbial biomass, 16 S rRNA gene richness, and bacterial community structure and composition. Snow patches created local biogeochemical gradients while inter-basin comparisons encompassed landscape scale gradients enabling comparisons of microbial controls at two distinct spatial scales. At the organic carbon rich, mesic, low elevation sites Acidobacteria and Actinobacteria were prevalent, while Firmicutes and Proteobacteria were dominant at the high elevation, low moisture and biomass sites. Microbial parameters were significantly related with soil water content and edaphic characteristics including soil pH, organic matter, and sulfate. However, the magnitude and even the direction of these relationships varied across basins and the application of mixed effects models revealed evidence of significant contextual effects at local and regional scales. The results highlight the importance of the geographic scale of sampling when determining the controls on soil microbial community characteristics.</p></div

    The soil pH versus the Chao1 estimates of 16 S rRNA gene richness (per 750 16 S rRNA gene sequences) for all of the samples (pane 1), at the six sites (panes 2–7), and regional effects (pane 8).

    No full text
    <p>Significant relationships have been noted for panes 1 and 8 (*) and a ≠ in panes 2–7 indicates that the within site relationships are statistically different across sites (i.e. a local contextual effect was found).</p
    corecore