900 research outputs found

    Particle Formation and Ordering in Strongly Correlated Fermionic Systems: Solving a Model of Quantum Chromodynamics

    Get PDF
    In this paper we study a (1+1)-dimensional version of the famous Nambu-Jona-Lasinio model of Quantum Chromodynamics (QCD2) both at zero and finite hadron density. We use non-perturbative techniques (non-Abelian bosonization and Truncated Conformal Space Approach). At zero density we describe a formation of fermion three-quark (nucleons and Δ\Delta-baryons) and boson (two-quark mesons, six-quark deuterons) bound states and also a formation of a topologically nontrivial phase. At finite hadron density, the model has a rich phase diagram which includes phases with density wave and superfluid quasi-long-range (QLR) order and also a phase of a baryon Tomonaga-Luttinger liquid (strange metal). The QLR order results as a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).Comment: 31 pages, pdflatex file, 7 figures; typos corrected, the version from Phys. Rev.

    On the third level descendent fields in the Bullough-Dodd model and its reductions

    Get PDF
    Exact vacuum expectation values of the third level descendent fields in the Bullough-Dodd model are proposed. By performing quantum group restrictions, we obtain <L−3Lˉ−3Φlk><L_{-3}{\bar L}_{-3}{\Phi}_{lk}> in perturbed minimal conformal field theories.Comment: 7 pages, LaTeX file with amssymb; to appear in Phys. Lett.

    Exact Maximal Height Distribution of Fluctuating Interfaces

    Full text link
    We present an exact solution for the distribution P(h_m,L) of the maximal height h_m (measured with respect to the average spatial height) in the steady state of a fluctuating Edwards-Wilkinson interface in a one dimensional system of size L with both periodic and free boundary conditions. For the periodic case, we show that P(h_m,L)=L^{-1/2}f(h_m L^{-1/2}) for all L where the function f(x) is the Airy distribution function that describes the probability density of the area under a Brownian excursion over a unit interval. For the free boundary case, the same scaling holds but the scaling function is different from that of the periodic case. Numerical simulations are in excellent agreement with our analytical results. Our results provide an exactly solvable case for the distribution of extremum of a set of strongly correlated random variables.Comment: 4 pages revtex (two-column), 1 .eps figure include

    A comparison of smooth basis constructions for isogeometric analysis

    Full text link
    In order to perform isogeometric analysis with increased smoothness on complex domains, trimming, variational coupling or unstructured spline methods can be used. The latter two classes of methods require a multi-patch segmentation of the domain, and provide continuous bases along patch interfaces. In the context of shell modeling, variational methods are widely used, whereas the application of unstructured spline methods on shell problems is rather scarce. In this paper, we therefore provide a qualitative and a quantitative comparison of a selection of unstructured spline constructions, in particular the D-Patch, Almost-C1C^1, Analysis-Suitable G1G^1 and the Approximate C1C^1 constructions. Using this comparison, we aim to provide insight into the selection of methods for practical problems, as well as directions for future research. In the qualitative comparison, the properties of each method are evaluated and compared. In the quantitative comparison, a selection of numerical examples is used to highlight different advantages and disadvantages of each method. In the latter, comparison with weak coupling methods such as Nitsche's method or penalty methods is made as well. In brief, it is concluded that the Approximate C1C^1 and Analysis-Suitable G1G^1 converge optimally in the analysis of a bi-harmonic problem, without the need of special refinement procedures. Furthermore, these methods provide accurate stress fields. On the other hand, the Almost-C1C^1 and D-Patch provide relatively easy construction on complex geometries. The Almost-C1C^1 method does not have limitations on the valence of boundary vertices, unlike the D-Patch, but is only applicable to biquadratic local bases. Following from these conclusions, future research directions are proposed, for example towards making the Approximate C1C^1 and Analysis-Suitable G1G^1 applicable to more complex geometries

    Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration

    Full text link
    The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlation of the PSF modulated by both atmospheric turbulence and optical aberrations. In this paper, we present a full FOV simulation of the LSST images by modeling both the atmosphere and the telescope optics with the most current data for the telescope specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer phase screens with the parameters estimated from the on-site measurements. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane data to introduce realistic aberrations and focal plane height fluctuations. Although this expected flatness deviation for LSST is small compared with that of other existing cameras, the fast f-ratio of the LSST optics makes this focal plane flatness variation and the resulting PSF discontinuities across the CCD boundaries significant challenges in our removal of the systematics. We resolve this complication by performing PCA CCD-by-CCD, and interpolating the basis functions using conventional polynomials. We demonstrate that this PSF correction scheme reduces the residual PSF ellipticity correlation below 10^-7 over the cosmologically interesting scale. From a null test using HST/UDF galaxy images without input shear, we verify that the amplitude of the galaxy ellipticity correlation function, after the PSF correction, is consistent with the shot noise set by the finite number of objects. Therefore, we conclude that the current optical design and specification for the accuracy in the focal plane assembly are sufficient to enable the control of the PSF systematics required for weak-lensing science with the LSST.Comment: Accepted to PASP. High-resolution version is available at http://dls.physics.ucdavis.edu/~mkjee/LSST_weak_lensing_simulation.pd

    Expectation values of descendent fields in the Bullough-Dodd model and related perturbed conformal field theories

    Get PDF
    The exact vacuum expectation values of the second level descendent fields intheBullough−Doddmodelarecalculated.Byperformingquantumgrouprestrictions,weobtain in the Bullough-Dodd model are calculated. By performing quantum group restrictions, we obtain in the Φ12\Phi_{12}, Φ21\Phi_{21} and Φ15\Phi_{15} perturbed minimal CFTs. In particular, the exact expectation value is found to be proportional to the square of the bulk free energy.Comment: 17 pages, LaTeX file with amssymb, v2:references added. To appear in Nucl. Phys.

    Synapse efficiency diverges due to synaptic pruning following over-growth

    Full text link
    In the development of the brain, it is known that synapses are pruned following over-growth. This pruning following over-growth seems to be a universal phenomenon that occurs in almost all areas -- visual cortex, motor area, association area, and so on. It has been shown numerically that the synapse efficiency is increased by systematic deletion. We discuss the synapse efficiency to evaluate the effect of pruning following over-growth, and analytically show that the synapse efficiency diverges as O(log c) at the limit where connecting rate c is extremely small. Under a fixed synapse number criterion, the optimal connecting rate, which maximize memory performance, exists.Comment: 15 pages, 16 figure

    Generalized sine-Gordon/massive Thirring models and soliton/particle correspondences

    Get PDF
    We consider a real Lagrangian off-critical submodel describing the soliton sector of the so-called conformal affine sl(3)(1)sl(3)^{(1)} Toda model coupled to matter fields (CATM). The theory is treated as a constrained system in the context of Faddeev-Jackiw and the symplectic schemes. We exhibit the parent Lagrangian nature of the model from which generalizations of the sine-Gordon (GSG) or the massive Thirring (GMT) models are derivable. The dual description of the model is further emphasized by providing the relationships between bilinears of GMT spinors and relevant expressions of the GSG fields. In this way we exhibit the strong/weak coupling phases and the (generalized) soliton/particle correspondences of the model. The sl(n)(1)sl(n)^{(1)} case is also outlined.Comment: 22 pages, LaTex, some comments and references added, conclusions unchanged, to appear in J. Math. Phy

    Intraoperative and postoperative complications of gynecological laparoscopic interventions: incidence and risk factors

    Get PDF
    Purpose The aims of this study were to determine the incidence of intraoperative and postoperative complications of laparoscopic gynecological interventions and to identify risk factors for such complications. Methods All patients who underwent laparoscopic interventions from September 2013 to September 2017 at the Department of Gynecology, Obstetrics and Reproductive Medicine, Saarland University Hospital were identified retrospectively using a prospectively compiled clinical database. Binary logistic regression analysis was used to identify independent risk factors for intra- and postoperative complications. Results Data from 3351 patients were included in the final analysis. Overall, 188 (5.6%) intraoperative and 219 (6.5%) postoperative complications were detected. On multivariate analysis, age [odds ratio (OR), 1.03; 95% confidence interval (CI) 1.01–1.04], surgery duration (OR, 1.02; 95% CI 1.02–1.03), carbon dioxide use (OR, 0.99; 95% CI 0.99–1.00), and surgical indication (all p ≤ 0.01) were independent risk factors for intraoperative and duration of surgery (OR, 1.01; 95% CI 1.01–1.02; p ≤ 0.01), carbon dioxide use (OR, 0.99; 95% CI 0.99–1.00; p ≤ 0.01), hemoglobin drop (OR, 1.41; 95% CI 1.21–1.65; p ≤ 0.01), and ASA status (p = 0.04) for postoperative complications. Conclusion In this large retrospective analysis with a generally low incidence of complications (5.6% intraoperative and 6.5% postoperative complications), a representative risk collective was identified: Patients aged > 38 years, surgery duration > 99 min, benign or malignant adnex findings were at higher risk for intraoperative and patients with surgery duration > 94 min, hemoglobin drop > 2 g/dl and ASA status III at higher risk for postoperative complications
    • …
    corecore