23 research outputs found

    Disparate Independent Genetic Events Disrupt the Secondary Metabolism Gene \u3cem\u3eperA\u3c/em\u3e in Certain Symbiotic \u3cem\u3eEpichloë\u3c/em\u3e Species

    Get PDF
    Peramine is an insect-feeding deterrent produced by Epichloë species in symbiotic association with C3 grasses. The perA gene responsible for peramine synthesis encodes a two-module nonribosomal peptide synthetase. Alleles of perA are found in most Epichloë species; however, peramine is not produced by many perA-containing Epichloë isolates. The genetic basis of these peramine-negative chemotypes is often unknown. Using PCR and DNA sequencing, we analyzed the perA genes from 72 Epichloë isolates and identified causative mutations of perA null alleles. We found nonfunctional perA-ΔR* alleles, which contain a transposon-associated deletion of the perA region encoding the C-terminal reductase domain, are widespread within the Epichloë genus and represent a prevalent mutation found in nonhybrid species. Disparate phylogenies of adjacent A2 and T2 domains indicated that the deletion of the reductase domain (R*) likely occurred once and early in the evolution of the genus, and subsequently there have been several recombinations between those domains. A number of novel point, deletion, and insertion mutations responsible for abolishing peramine production in full-length perA alleles were also identified. The regions encoding the first and second adenylation domains (A1 and A2, respectively) were common sites for such mutations. Using this information, a method was developed to predict peramine chemotypes by combining PCR product size polymorphism analysis with sequencing of the perA adenylation domains

    Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    Get PDF
    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine

    Next generation multiplexing for digital PCR using a novel melt-based hairpin probe design

    Get PDF
    Digital PCR (dPCR) is a powerful tool for research and diagnostic applications that require absolute quantification of target molecules or detection of rare events, but the number of nucleic acid targets that can be distinguished within an assay has limited its usefulness. For most dPCR systems, one target is detected per optical channel and the total number of targets is limited by the number of optical channels on the platform. Higher-order multiplexing has the potential to dramatically increase the usefulness of dPCR, especially in scenarios with limited sample. Other potential benefits of multiplexing include lower cost, additional information generated by more probes, and higher throughput. To address this unmet need, we developed a novel melt-based hairpin probe design to provide a robust option for multiplexing digital PCR. A prototype multiplex digital PCR (mdPCR) assay using three melt-based hairpin probes per optical channel in a 16-well microfluidic digital PCR platform accurately distinguished and quantified 12 nucleic acid targets per well. For samples with 10,000 human genome equivalents, the probe-specific ranges for limit of blank were 0.00%–0.13%, and those for analytical limit of detection were 0.00%–0.20%. Inter-laboratory reproducibility was excellent (r2 = 0.997). Importantly, this novel melt-based hairpin probe design has potential to achieve multiplexing beyond the 12 targets/well of this prototype assay. This easy-to-use mdPCR technology with excellent performance characteristics has the potential to revolutionize the use of digital PCR in research and diagnostic settings

    Characterization of Epichloë coenophiala within the U.S.: are all tall fescue endophytes created equal?

    Get PDF
    Tall fescue (Lolium arundinaceum) is a valuable and broadly adapted forage grass that occupies approximately 14 million hectares across the United States. A native to Europe, tall fescue was likely introduced into the U.S. around the late 1800’s. Much of the success of tall fescue can be attributed to Epichloë coenophiala (formerly Neotyphodium coenophialum) a seed borne symbiont that aids in host persistence. Epichloë species are capable of producing a range of alkaloids (ergot alkaloids, indole-diterpenes, lolines and peramine) that provide protection to the plant host from herbivory. Unfortunately, most tall fescue within the U.S., commonly referred to as KY31, harbors the endophyte E. coenophiala that causes toxicity to grazing livestock due to the production of ergot alkaloids. Molecular analyses of tall fescue endophytes have identified four independent associations, representing tall fescue with E. coenophiala, Epichloë sp. FaTG-2, Epichloë sp. FaTG-3 or Epichloë sp. FaTG-4. Each of these Epichloë species can be further distinguished based on genetic variation that equates to differences in the alkaloid gene loci. Tall fescue samples were evaluated using markers to SSR and alkaloid biosynthesis genes to determine endophyte strain variation present within continental U.S. Samples represented seed and tillers from the Suiter farm (Menifee County, KY), which is considered the originating site of KY31, as well as plant samples collected from 14 states, breeder’s seed and plant introduction lines (National Plant Germplasm System, NPGS). This study revealed two prominent E. coenophiala genotypes based on presence of alkaloid biosynthesis genes and SSR markers and provides insight into endophyte variation within continental U.S. across historical and current tall fescue samples

    Ergot alkaloids and summary of biosynthesis pathway.

    No full text
    <p>(A) Ergoline alkaloid biosynthesis pathways in the Clavicipitaceae. Arrows indicate one or more steps catalyzed by products of genes indicated. Arrows and genes in blue indicate steps in synthesis of the first fully cyclized intermediate (skeleton). Variation in the <i>easA</i> gene (underlined) determines whether the ergoline skeleton is festuclavine or agroclavine. Arrows and genes in red indicate steps in decoration of the skeleton to give the variety of ergolines in the Clavicipitaceae. Asterisks indicate genes newly discovered in the genome sequences of <i>C. paspali</i>, <i>N. gansuense</i> var. <i>inebrians</i> and <i>P. ipomoeae</i>. (B) Ergopeptines produced by strains in this study.</p

    Peramine biosynthesis loci (<i>PER</i>) in epichloae and the homologous loci in other Clavicipitaceae.

    No full text
    <p>On each map <i>perA</i> is color-coded blue for a complete gene and as an open box for <i>perA-</i>ΔR*. Domains of <i>perA</i> are indicated as A (adenylation), T (thiolation), C (condensation), M (<i>N</i>-methylation) and R* (reduction). Subscripts indicate postulated specificity of adenylation domains for 1-pyrroline-5-carboxylate (A<sub>P</sub>) and arginine (A<sub>R</sub>) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003323#pgen.1003323-Tanaka1" target="_blank">[16]</a>. Other features are indicated as in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003323#pgen-1003323-g007" target="_blank">Figure 7</a>.</p

    GC proportions in genic and repeat DNA of sequenced genomes.<sup>a</sup>

    No full text
    a<p>Abbreviations: CDS = coding sequence, GC = proportion of sequence that is G or C, non-Rpt-IG = nonrepetitive intergenic DNA, Rpt = repetitive DNA.</p>b<p>Statistics for <i>P. ipomoeae</i> are tentative because the assembly was filtered by selecting only contigs containing tBLASTx matches to genome sequences from the other Clavicipitaceae.</p
    corecore