118 research outputs found

    In vivo functional characterisation of pheromone binding protein-1 in the silkmoth, Bombyx mori

    Get PDF
    Male moths detect sex pheromones emitted by conspecific females with high sensitivity and specificity by the olfactory sensilla on their antennae. Pheromone binding proteins (PBPs) are highly enriched in the sensillum lymph of pheromone sensitive olfactory sensilla and are supposed to contribute to the sensitivity and selectivity of pheromone detection in moths. However, the functional role of PBPs in moth sex pheromone detection in vivo remains obscure. In the silkmoth, Bombyx mori, female moths emit bombykol as a single attractive sex pheromone component along with a small amount of bombykal that negatively modulates the behavioural responses to bombykol. A pair of olfactory receptor neurons, specifically tuned to bombykol or bombykal, co-localise in the trichodeum sensilla, the sensillum lymph of which contains a single PBP, namely, BmPBP1. We analysed the roles of BmPBP1 using BmPBP1-knockout silkmoth lines generated by transcription activator-like effector nuclease-mediated gene targeting. Electroantennogram analysis revealed that the peak response amplitudes of BmPBP1-knockout male antennae to bombykol and bombykal were significantly reduced by a similar percentage when compared with those of the wild-type males. Our results indicate that BmPBP1 plays a crucial role in enhancing the sensitivity, but not the selectivity, of sex pheromone detection in silkmoths

    Co-infection of SARS-CoV-2 and influenza virus causes more severe and prolonged pneumonia in hamsters

    Get PDF
    Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a serious public health concern worldwide. Notably, co-infection with other pathogens may worsen the severity of COVID-19 symptoms and increase fatality. Here, we show that co-infection with influenza A virus (IAV) causes more severe body weight loss and more severe and prolonged pneumonia in SARS-CoV-2-infected hamsters. Each virus can efficiently spread in the lungs without interference by the other. However, in immunohistochemical analyses, SARS-CoV-2 and IAV were not detected at the same sites in the respiratory organs of co-infected hamsters, suggesting that either the two viruses may have different cell tropisms in vivo or each virus may inhibit the infection and/or growth of the other within a cell or adjacent areas in the organs. Furthermore, a significant increase in IL-6 was detected in the sera of hamsters co-infected with SARS-CoV-2 and IAV at 7 and 10 days post-infection, suggesting that IL-6 may be involved in the increased severity of pneumonia. Our results strongly suggest that IAV co-infection with SARS-CoV-2 can have serious health risks and increased caution should be applied in such cases

    Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype

    Get PDF
    Cellular senescence, a state of irreversible cell-cycle arrest caused by a variety of cellular stresses, is critically involved in age-related tissue dysfunction in various organs. However, the features of cells in the central nervous system that undergo senescence and their role in neural impairment are not well understood as yet. Here, through comprehensive investigations utilising single-cell transcriptome analysis and various mouse models, we show that microglia, particularly in the white matter, undergo cellular senescence in the brain and spinal cord during ageing and in disease models involving demyelination. Microglial senescence is predominantly detected in disease-associated microglia, which appear in ageing and neurodegenerative diseases. We also find that commensal bacteria promote the accumulation of senescent microglia and disease-associated microglia during ageing. Furthermore, knockout of p16 INK4a, a key senescence inducer, ameliorates the neuroinflammatory phenotype in damaged spinal cords in mice. These results advance our understanding of the role of cellular senescence in the central nervous system and open up possibilities for the treatment of age-related neural disorders.Matsudaira T., Nakano S., Konishi Y., et al. Cellular senescence in white matter microglia is induced during ageing in mice and exacerbates the neuroinflammatory phenotype. Communications Biology 6, 665 (2023); https://doi.org/10.1038/s42003-023-05027-2

    Development and maturation of glycinergic auditory pathways

    Get PDF
    科学研究費補助金研究成果報告書研究種目: 基盤研究(C)研究期間: 2000~2001課題番号: 12680730研究代表者: 工藤 基(滋賀医科大学・医学部・教授)研究分担者: 黒川 清(滋賀医科大学・医学部・助教授)研究分担者: 中村 高秋(滋賀医科大学・医学部・助手)研究分担者: 櫻井 弘徳(滋賀医科大学・医学部・助手

    A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    Get PDF
    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence

    Effects of exercise training on gingival oxidative stress in obese rats

    Get PDF
    Objective: The purpose of the present study was to investigate the effects of exercise training on serum reactive oxygen species (ROS) level and gingival oxidative stress in obese rats fed a high-fat diet. Design: Rats were divided into three groups (n = 14/group): one control group (fed a regular diet) and two experimental groups (fed a high-fat diet with and without exercise training [treadmill: 5 days/week]). The rats were sacrificed at 4 or 8 weeks. The level of serum reactive oxidative metabolites (ROM) was measured as an indicator of circulating ROS. The level of 8-hydroxydeoxyguanosine (8-OHdG) and reduced-form glutathione (GSH)/oxidised-form glutathione (GSSG) ratio were determined to evaluate gingival oxidative stress. Results: The obese rats fed a high-fat diet without exercise training showed higher serum ROM levels [Carratelli Units (CARR U)] (mean +/- SD; 413 +/- 64) than the control (333 +/- 12) at 4 weeks (p = 0.023). Such a condition resulted in higher 8-OHdG levels (ng/mg mtDNA) (0.97 +/- 0.18) (p < 0.05) and a lower GSH/GSSG ratio (17.0 +/- 3.1) (p < 0.05) in gingival tissues, compared to the control (0.55 +/- 0.13 for 8-OHdG and 23.6 +/- 5.8 for GSH/GSSG ratio) at 8 weeks. In addition, the obese rats fed a high-fat diet with exercise training showed lower serum ROM (623 +/- 103) (p<0.001) and gingival 8-OHdG levels (0.69 +/- 0.17) (p = 0.012) than those without exercise training (1105 95 for ROM and 0.55 +/- 0.13 for 8-OHdG) at 8 weeks. Conclusions: Obesity prevention by exercise training may effectively suppress gingival oxidative stress by decreasing serum ROS in rats
    corecore