64 research outputs found

    Assessment of Osteoporosis in Injured Older Women Admitted to a Safety-Net Level One Trauma Center: A Unique Opportunity to Fulfill an Unmet Need

    Get PDF
    Background. Older trauma patients often undergo computed tomography (CT) as part of the initial work-up. CT imaging can also be used opportunistically to measure bone density and assess osteoporosis. Methods. In this retrospective cohort study, osteoporosis was ascertained from admission CT scans in women aged ≥65 admitted to the ICU for traumatic injury during a 3-year period at a single, safety-net, level 1 trauma center. Osteoporosis was defined by established CT-based criteria of average L1 vertebral body Hounsfield units <110. Evidence of diagnosis and/or treatment of osteoporosis was the primary outcome. Results. The study cohort consisted of 215 women over a 3-year study period, of which 101 (47%) had evidence of osteoporosis by CT scan criteria. There were no differences in injury severity score, hospital length of stay, cost, or discharge disposition between groups with and without evidence of osteoporosis. Only 55 (59%) of the 94 patients with osteoporosis who survived to discharge had a documented osteoporosis diagnosis and/or corresponding evaluation/treatment plan. Conclusion. Nearly half of older women admitted with traumatic injuries had underlying osteoporosis, but 41% had neither clinical recognition of this finding nor a treatment plan for osteoporosis. Admission for traumatic injury is an opportunity to assess osteoporosis, initiate appropriate intervention, and coordinate follow-up care. Trauma and acute care teams should consider assessment of osteoporosis in women who undergo CT imaging and provide a bridge to outpatient services

    Can learning health systems help organisations deliver personalised care?

    Get PDF
    There is increasing international policy and clinical interest in developing learning health systems and delivering precision medicine, which it is hoped will help reduce variation in the quality and safety of care, improve efficiency, and lead to increasing the personalisation of healthcare. Although reliant on similar policies, informatics tools, and data science and implementation research capabilities, these two major initiatives have thus far largely progressed in parallel. In this opinion piece, we argue that they should be considered as complementary, synergistic initiatives whereby the creation of learning health systems infrastructure can support and catalyse the delivery of precision medicine that maximises the benefits and minimises the risks associated with treatments for individual patients. We illustrate this synergy by considering the example of treatments for asthma, which is now recognised as an umbrella term for a heterogeneous group of related conditions

    SHEAR STRENGTH OF METAL WIRE REINFORCED ACRYLIC BONE CEMENT

    No full text

    Academische vorming in het medisch curriculum: noodzaak of luxe?

    No full text
    • …
    corecore