52 research outputs found

    Mitochondria and inflammation: cell death heats up

    Get PDF
    Mitochondrial outer membrane permeabilization (MOMP) is essential to initiate mitochondrial apoptosis. Due to the disruption of mitochondrial outer membrane integrity, intermembrane space proteins, notably cytochrome c, are released into the cytosol whereupon they activate caspase proteases and apoptosis. Beyond its well-established apoptotic role, MOMP has recently been shown to display potent pro-inflammatory effects. These include mitochondrial DNA dependent activation of cGAS-STING signaling leading to a type I interferon response. Secondly, via an IAP-regulated mechanism, MOMP can engage pro-inflammatory NF-ÎșB signaling. During cell death, apoptotic caspase activity inhibits mitochondrial dependent inflammation. Importantly, by engaging an immunogenic form of cell death, inhibiting caspase function can effectively inhibit tumorigenesis. Unexpectedly, these studies reveal mitochondria as inflammatory signaling hubs during cell death and demonstrate its potential for therapeutic exploitation

    Caspase-independent cell death: an anti-cancer double-whammy

    Get PDF
    No abstract available

    Mitochondrial DNA in inflammation and immunity

    Get PDF
    Mitochondria are cellular organelles that orchestrate a vast range of biological processes, from energy production and metabolism to cell death and inflammation. Despite this seemingly symbiotic relationship, mitochondria harbour within them a potent agonist of innate immunity: their own genome. Release of mitochondrial DNA into the cytoplasm and out into the extracellular milieu activates a plethora of different pattern recognition receptors and innate immune responses, including cGAS‐STING, TLR9 and inflammasome formation leading to, among others, robust type I interferon responses. In this Review, we discuss how mtDNA can be released from the mitochondria, the various inflammatory pathways triggered by mtDNA release and its myriad biological consequences for health and disease

    Mitochondria as multifaceted regulators of cell death

    Get PDF
    Through their many and varied metabolic functions, mitochondria power life. Paradoxically, mitochondria also have a central role in apoptotic cell death. Upon induction of mitochondrial apoptosis, mitochondrial outer membrane permeabilization (MOMP) usually commits a cell to die. Apoptotic signalling downstream of MOMP involves cytochrome c release from mitochondria and subsequent caspase activation. As such, targeting MOMP in order to manipulate cell death holds tremendous therapeutic potential across different diseases, including neurodegenerative diseases, autoimmune disorders and cancer. In this Review, we discuss new insights into how mitochondria regulate apoptotic cell death. Surprisingly, recent data demonstrate that besides eliciting caspase activation, MOMP engages various pro-inflammatory signalling functions. As we highlight, together with new findings demonstrating cell survival following MOMP, this pro-inflammatory role suggests that mitochondria-derived signalling downstream of pro-apoptotic cues may also have non-lethal functions. Finally, we discuss the importance and roles of mitochondria in other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis. Collectively, these new findings offer exciting, unexplored opportunities to target mitochondrial regulation of cell death for clinical benefit

    Mitochondria and cell death-associated inflammation

    Get PDF
    Mitochondria have recently emerged as key drivers of inflammation associated with cell death. Many of the pro-inflammatory pathways activated during cell death occur upon mitochondrial outer membrane permeabilization (MOMP), the pivotal commitment point to cell death during mitochondrial apoptosis. Permeabilised mitochondria trigger inflammation, in part, through the release of mitochondrial-derived damage-associated molecular patterns (DAMPs). Caspases, while dispensable for cell death during mitochondrial apoptosis, inhibit activation of pro-inflammatory pathways after MOMP. Some of these mitochondrial-activated inflammatory pathways can be traced back to the bacterial ancestry of mitochondria. For instance, mtDNA and bacterial DNA are highly similar thereby activating similar cell autonomous immune signalling pathways. The bacterial origin of mitochondria suggests that inflammatory pathways found in cytosol-invading bacteria may be relevant to mitochondrial-driven inflammation after MOMP. In this review, we discuss how mitochondria can initiate inflammation during cell death highlighting parallels with bacterial activation of inflammation. Moreover, we discuss the roles of mitochondrial inflammation during cell death and how these processes may potentially be harnessed therapeutically, for instance to improve cancer treatment

    Targeting immunogenic cell death in cancer

    Get PDF
    Immunogenic cell death (ICD) is an emerging type of cancer cell death triggered by certain chemotherapeutic drugs, oncolytic viruses, physicochemical therapies, photodynamic therapy and radiotherapy. It involves the activation of the immune system against cancer in immunocompetent hosts. ICD comprises the release of damage‐associated molecular patters (DAMPs) from dying tumor cells that result in the activation of tumor‐specific immune responses. Thus, eliciting long‐term efficacy of anticancer drugs by combining direct cancer cell killing and antitumor immunity. Remarkably, subcutaneous injection of dying tumor cells undergoing ICD has been shown to provoke anticancer vaccine effect in vivo. DAMPs include the cell surface exposure of calreticulin (CRT) and heat‐shock proteins (HSP70 and HSP90), extracellular release of adenosine triphosphate (ATP), high‐mobility group box‐1 (HMGB1), and type Ⅰ IFNs and members of the IL‐1 cytokine family. In this review, we discuss the cell death modalities connected to ICD, the DAMPs exposed during ICD and the mechanism by which they activate the immune system. Finally, we discuss the therapeutic potential and challenges of harnessing ICD in cancer immunotherapy

    Mitochondrial quality control: from molecule to organelle

    Get PDF
    Mitochondria are organelles central to myriad cellular processes. To maintain mitochondrial health, various processes co-operate at both the molecular and organelle level. At the molecular level, mitochondria can sense imbalances in their homeostasis and adapt to these by signaling to the nucleus. This mito-nuclear communication leads to the expression of nuclear stress response genes. Upon external stimuli, mitochondria can also alter their morphology accordingly, by inducing fission or fusion. In an extreme situation, mitochondria are degraded by mitophagy. Adequate function and regulation of these mitochondrial quality control pathways are crucial for cellular homeostasis. As we discuss, alterations in these processes have been linked to several pathologies including neurodegenerative diseases and cancer

    Retrograde signaling from autophagy modulates stress responses

    Get PDF
    Macroautophagy is a process in which cytoplasmic components, including whole organelles, are degraded within lysosomes. Basally, this process is essential for homeostasis and is constitutively functional in most cells, but it can also be implemented as part of stress responses. We discuss findings showing that autophagy proteins can modulate and amplify the activities of transcription factors involved in stress responses, such as those in the p53, FOXO, MiT/TFE, Nrf2, and NFÎșB/Rel families. Thus, transcription factors not only amplify stress responses and autophagy but are also subject to retrograde regulation by autophagy-related proteins. Physical interactions with autophagy-related proteins, competition for activating intermediates, and “signalphagy,” which is the role autophagy plays in the degradation of specific signaling proteins, together provide powerful tools for implementing negative feedback or positive feed-forward loops on the transcription factors that regulate autophagy. We present examples illustrating how this network interacts to regulate metabolic and physiologic responses

    Tumour immunogenicity goes with the (mitochondrial electron) flow

    Get PDF
    Mitochondrial metabolism and electron transport chain (ETC) function are essential for tumour proliferation and metastasis. However, the impact of ETC function on cancer immunogenicity is not well understood. In a recent study, Mangalhara et al. found that inhibition of complex II leads to enhanced tumour immunogenicity, T‐cell‐mediated cytotoxicity and inhibition of tumour growth. Surprisingly, this antitumour effect is mediated by succinate accumulation affecting histone methylation. Histone methylation promotes the transcriptional upregulation of major histocompatibility complex–antigen processing and presentation (MHC‐APP) genes in a manner independent of interferon signalling. Modulating mitochondrial electron flow to enhance tumour immunogenicity provides an exciting new therapeutic avenue and may be particularly attractive for tumours with reduced expression of MHC‐APP genes or dampened interferon signalling

    Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its N-terminal fragment

    Get PDF
    Bcl-2 family member Bid is subject to autoinhibition; in the absence of stimuli, its N-terminal region sequesters the proapoptotic Bcl-2 homology 3 (BH3) domain. Upon proteolytic cleavage in its unstructured loop, Bid is activated, although structural data reveal no apparent resulting conformational change. We found that, upon Bid cleavage, the N-terminal fragment (tBid-N) is ubiquitinated and degraded, thus freeing the BH3 domain in the C-terminal fragment (tBid-C). Ubiquitination of tBid-N is unconventional because acceptor sites are neither lysines nor the N terminus. Chemical approaches implicated thioester and hydroxyester linkage of ubiquitin and mutagenesis implicated serine and possibly threonine as acceptor residues in addition to cysteine. Acceptor sites reside predominantly but not exclusively in helix 1, which is required for ubiquitination and degradation of tBid-N. Rescue of tBid-N from degradation blocked Bid's ability to induce mitochondrial outer membrane permeability but not mitochondrial translocation of the cleaved complex. We conclude that unconventional ubiquitination and proteasome-dependent degradation of tBid-N is required to unleash the proapoptotic activity of tBid-C
    • 

    corecore