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Abstract

Mitochondria are cellular organelles that orchestrate a vast range
of biological processes, from energy production and metabolism to
cell death and inflammation. Despite this seemingly symbiotic
relationship, mitochondria harbour within them a potent agonist
of innate immunity: their own genome. Release of mitochondrial
DNA into the cytoplasm and out into the extracellular milieu acti-
vates a plethora of different pattern recognition receptors and
innate immune responses, including cGAS-STING, TLR9 and
inflammasome formation leading to, among others, robust type I
interferon responses. In this Review, we discuss how mtDNA can
be released from the mitochondria, the various inflammatory
pathways triggered by mtDNA release and its myriad biological
consequences for health and disease.
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Introduction

Serving as a first line of defence, the innate immune system guards us

against a plethora of insults and invading microorganisms. Infection

by pathogenic agents is detected in cells by pattern recognition recep-

tors (PRRs) which recognise specific pathogen-associated molecular

patterns (PAMPs). PRRs can be broadly classified into four distinct

groups: NOD-like receptors (NLRs), Toll-like receptors (TLRs), reti-

noic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and C-type

lectin receptors (CLRs) [1]. Upon detection of a PAMP, PRRs initiate a

multitude of different signalling pathways, which culminate in the

up-regulation of various type I interferons, pro-inflammatory

chemokines and cytokines. These prime the adaptive immune system

and create a hostile environment for the microorganism in which to

survive. Additionally, damage-associated molecular patterns

(DAMPs) are immune triggers that arise from the cell itself, such as

proteins or DNA, and can activate innate immune pathways [2].

Mitochondria first appeared in eukaryotic cells about two billion

years ago as a-proteobacterium, in what is thought to be an

endosymbiotic relationship [3,4]. Over time, these bacteria evolved

to become the much-studied organelle that we know today, playing

crucial roles in metabolism, calcium homeostasis and cell death.

Nevertheless, they have maintained an independent genome, which

encodes 37 genes, comprised of 13 mRNAs forming key components

of the oxidative phosphorylation system, in addition to 2 ribosomal

RNA components and 22 tRNAs [3,4]. An estimated 1,000 proteins

are located in the mitochondria, all of which, except those encoded

by mtDNA, are translated in the cytosol and imported into the mito-

chondria [5].

Mitochondrial DNA itself is a circular molecule of double-

stranded (ds)DNA. Transcription of both the heavy and light strand

results in long, full-length transcripts which are processed by RNase

enzymes to produce mature mRNA, tRNA and ribosomal RNA. In

mammals, the polymerase responsible for mtDNA replication is

DNA polymerase c, but as POLc cannot replicate dsDNA, the DNA

helicase Twinkle is required to act directly before to unwind the

DNA structure. Newly synthesised single-stranded (ss)DNA is

bound by mitochondrial single-stranded DNA-binding protein to

prevent secondary structure formation and attack by nucleases.

Mitochondrial DNA replication has recently been reviewed exten-

sively elsewhere [6]; here, we focus on the unique aspects of

mtDNA which make it immunostimulatory. We will then discuss

how mtDNA which is ejected from the mitochondria under specific

circumstances can activate different innate immune pathways,

including cGAS-STING signalling, inflammasomes and Toll-like

receptors. We will also focus on the role of mtDNA in the formation

of neutrophil extracellular traps (NETs) and the transfer of mtDNA

between cells.

Mitochondrial DNA as a stimulator of the immune system

Potentially stemming from its bacterial origin, mitochondrial DNA is

sensed as “foreign”, suggesting that it is seen differently to “self”

DNA in cells. One example of this can be seen in its methylation

status, where many studies have reported mtDNA to be hypomethy-

lated compared to nuclear DNA [7,8], despite the presence of DNA

methyltransferases in the mitochondria [9,10]. Some groups have

reported aberrant methylation patterns of mtDNA, including 5-

methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) at CpG

motifs [9–14], although others have proposed technical limitations

to this work and using more sensitive techniques report that mtDNA
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is devoid of CpG methylation [15]. Clearly, more effort is required

in determining the precise degree of methylation in mtDNA, but if

studies showing an absence of CpG methylation are correct, then

mtDNA would harbour unmethylated CpG motifs similar to bacterial

DNA, which could potentially activate pattern recognition receptors

such as TLR9, absent in melanoma 2 (AIM2) and cGAS [15–18].

Mitochondrial DNA replication and transcription itself may repre-

sent a rich source of potential activators of DNA pattern recognition

receptors; for example, RNA:DNA hybrids form during transcrip-

tion, in addition to long stretches of ssDNA and R-loops composed

of RNA:DNA hybrids with a non-template ssDNA which can be

recognised by cGAS [16].

Mitochondrial DNA exists in the mitochondrial matrix in close

proximity to the electron transport chain, a major source of reac-

tive oxygen species. Due to this, it is particularly vulnerable to

oxidation, resulting in mtDNA mutations which can contribute to

the pathogenesis of cancer [17], diabetes [18] and ageing [19]. It

was thought the cell had limited capacity to repair mtDNA;

however, multiple repair pathways are now well characterised

[20]. Mitochondrial DNA is often schematically represented as a

plasmid structure; however, this is an over-simplification. Rather,

super-resolution imaging has revealed that it is densely compacted

into nucleoids consisting of one copy of mtDNA and a number of

different proteins [21], the most notable of which is mitochondrial

transcription factor A (mtTFA, commonly referred to as TFAM). It

might be assumed that the compaction of mtDNA into protein

structures shields DNA from recognition, but this is not the case

as we shall discuss further in this Review, and in fact, a number

of studies have shown that TFAM itself might be immunostimula-

tory [13,14].

In a landmark study in 2004, Collins et al [22] found that inject-

ing mtDNA into the joints of mice resulted in localised inflammation

Glossary

5hmC 5-Hydroxymethylcytosine
5mC 5-Methylcytosine
AGS Aicardi–Goutieres syndrome
AIM2 Absent in melanoma 2
APC Antigen-presenting cell
ASC Apoptosis-associated speck-like protein containing a CARD
ATP Adenosine triphosphate
BAK Bcl-2 homologous antagonist/killer
BAX Bcl-2-associated X protein
BID BH3 interacting-domain death agonist
CARD Caspase activation and recruitment domain
CD47 Cluster of differentiation 47
CDN Cyclic dinucleotide
cGAMP Cyclic guanosine monophosphate–adenosine

monophosphate
cGAS Cyclic GMP-AMP synthase
CLR C-type lectin receptor
CMPK2 Cytidine/Uridine monophosphate kinase 2
DAMP Damage-associated molecular pattern
DC Dendritic cell
DNase Deoxyribonuclease
dsDNA Double-stranded DNA
ER Endoplasmic reticulum
EV Extracellular vesicle
GTP Guanosine-50-triphosphate
HMGB1 High-mobility group protein 1
HSV-1 Herpes simplex virus-1
IAP Inhibitor of apoptosis protein
IFNAR Interferon-a/b receptor
IFN-b Interferon-b
IFN-c Interferon-c
IL-18 Interleukin-18
IL-1R Interleukin-1 receptor
IL-1b Interleukin-1b
IL-6 Interleukin-6
IRF3 Interferon regulatory factor 3
ISG Interferon-stimulated gene
K+ Potassium
LPS Lipopolysaccharide
LRR Leucine-rich repeat
MAPK Mitogen-activated protein kinase
MAVS Mitochondrial anti-viral signalling protein
MDA5 Melanoma differentiation-associated protein 5
MEF Mouse embryonic fibroblast
MiDAS Mitochondrial dysfunction-associated senescence

MI Myocardial infarction
MOMP Mitochondrial outer membrane permeabilisation
mPTP Mitochondrial permeability transition pore
mtDNA Mitochondrial DNA
NASH Non-alcoholic fatty liver disease
NET Neutrophil extracellular trap
NF-jB Nuclear factor kappa-light-chain-enhancer of activated B

cells
NLRC4 NLR Family CARD Domain Containing 4
NLR Nucleotide oligomerisation domain-like receptor
NLRP1 NLR Family Pyrin Domain Containing 1
NLRP3 NACHT, LRR and PYD domain-containing protein 3
NOD Nucleotide oligomerisation domain
ODN Oligodeoxynucleotide
OPA1 Optic Atrophy 1 Mitochondrial Dynamin Like GTPase
PAMP Pathogen-associated molecular pattern
pDC Plasmacytoid dendritic cell
PD-L1 Programmed death-ligand 1
PINK1 Phosphatase and tensin homolog-induced kinase 1
PMA Phorbol 12-myristate 13-acetate
PNPase Polynucleotide phosphorylase
PRR Pattern recognition receptor
PYD Pyrin domain
RAGE Receptor for advanced glycation endproducts
RIG-I Retinoic acid-inducible gene I
RIP1 Receptor-interacting serine/threonine-protein kinase 1
RLR Retinoic acid-inducible gene-I-like receptors
RNP IC Ribonucleotide immune complex
ROS Reactive oxygen species
SAMDH1 Sterile alpha motif domain and HD domain-containing

protein 1
SIRS Systemic inflammatory response syndrome
SLE Systemic lupus erythematosus
ssDNA Single-stranded DNA
STING Stimulator of interferon genes
SUV3 Suppressor of Var1
TBK1 TANK-binding kinase 1
TFAM Transcription factor A, mitochondrial
TLR9 Toll-like receptor 9
TLR Toll-like receptor
TNF Tumour necrosis factor
TREX1 Three Prime Repair Exonuclease 1
tRNA Transfer RNA
VDAC Voltage-dependent anion channel
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and arthritis. Further investigation revealed that the inflammation

was dependent on the presence of oxidatively damaged bases in the

mtDNA, as injection of an oligodeoxynucleotide (ODN) with the

same sequence but without the oxidised residue had no effect. The

observation that mtDNA can elicit potent immune responses opened

a whole new field of research, and it is now appreciated that mtDNA

can stimulate many PRRs, including cGAS, TLR9 and inflamma-

somes (Fig 1). Release of mtDNA from mitochondria and subse-

quent recognition by PRRs occurs during many cellular processes,

including infection, cell death and neurodegeneration, and this will

be the focus of the rest of this Review.

mtDNA-dependent activation of cGAS-STING signalling

mtDNA release in infection
Through necessity, cells have evolved elegant systems to detect the

presence of invading pathogenic DNA. Cyclic GMP-AMP synthase

(cGAS) is one such direct detector, which binds dsDNA to form a

dimer [23,24]. cGAS then undergoes a conformational change

which facilitates the conversion of ATP and GTP into 2030-cyclic
GMP-AMP (cGAMP) [25–31]. cGAMP is a second messenger, which

binds the endoplasmic reticulum (ER)-resident protein stimulator of

interferon genes (STING) inducing a conformational change in its

C-terminal tail. TANK-binding kinase 1 (TBK1) is recruited to

STING which phosphorylates it and the transcription factor inter-

feron regulatory factor 3 (IRF3), eliciting the transcription of

hundreds of interferon stimulatory genes (ISGs) that are potently

anti-viral [32] (Fig 2). cGAS was assumed to be primarily cytosolic

to avoid persistent activation by self-DNA in the nucleus, but recent

work has shown it to be present in the nucleus [33,34] and at the

plasma membrane [35]. A recent attempt to resolve these discrep-

ancies by Volkmann et al [36] reveals a more complex model than

the cytosolic DNA sensing paradigm. The authors show that the

majority of cGAS protein is nuclear, and they propose a model

where cGAS must be “desequestered” prior to its full activation.

However, it remains unclear how cytosolic DNA can be detected by

cGAS, if cGAS is tethered in the nuclear compartment. Three inde-

pendent studies were the first to show that mtDNA released from

mitochondria is able to activate cGAS-STING signalling [37–39].

White et al and Rongvaux et al explored mtDNA release in the

context of cell death (discussed later in this Review), whereas West

et al provided evidence that TFAM deficiency promotes mitochon-

drial stress and mis-packaged mtDNA, resulting in their ejection

into the cytoplasm where they bind and activate cGAS initiating a

type I interferon response [39] (Fig 2). Of pathophysiological rele-

vance, infection with Herpes simplex virus-1 (HSV-1) or vesicular

stomatitis virus (VSV) results in mtDNA stress, TFAM depletion

and mtDNA entrance into the cytoplasm. The cytoplasmic mtDNA

is then sensed by cGAS, triggering cGAS-STING signalling leading

to the up-regulation of a plethora of interferon genes, conferring an

anti-viral state on the cell. Importantly, Tfam+/� cells, which

exhibit mtDNA stress, are more resistant to infection with HSV-1 or

VSV than wild-type cells, as they have heightened ISG expression

owing to mtDNA release. Mechanistically, the HSV-1 virus encodes

a nuclease, UL12.5, which localises to the mitochondria and
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Figure 1. Overview of pro-inflammatory signalling pathways engaged by mitochondrial DNA.

Mitochondrial DNA (mtDNA) can trigger various pro-inflammatory signalling pathways by endosomal localised TLR9 or via cytosolic cGAS-STING or via cytosolic
inflammasome (AIM2 or NLRP3). Top: TLR9 binds mtDNA in the endosome eliciting an NF-jB-dependent pro-inflammatory signalling program. Middle: cGAS recognises
mtDNA in the cytosol and activates endoplasmic reticulum (ER)-localised STING triggering an interferon response. Bottom: mtDNA-dependent inflammasome activity leads
to caspase-1-dependent maturation or pro-inflammatory IL-1 and IL-8.
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degrades mtDNA, resulting in complete loss of mtDNA in infected

cells [40,41]. Removal of mtDNA in infected cells does not appear

to impact HSV replication [42]. Furthermore, exonuclease activity is

required for effective viral DNA production to maintain cell-to-cell

infectivity, though whether this is related to UL12.5’s mtDNA-

targeted nuclease activity is unknown [43].

Curiously, infection with RNA viruses, such as dengue virus, also

elicits a cGAS-STING response, despite cGAS being a DNA-specific

PRR [44]. Several studies have now shown that dengue virus causes

the release of predominantly oxidised mtDNA into the cytosol,

where it can activate both cGAS [45,46] and TLR9 [47]. Dengue

virus has evolved strategies to circumvent cytosolic mtDNA-induced

cGAS signalling during infection by encoding proteases which target

cGAS and STING for degradation, thus ensuring persistence of the

virus [46,48,49].

Infection with the bacterial pathogen Mycobacterium tuberculosis

triggers cGAS activation and subsequent IRF3-dependent type I

interferon response [50–52]. This was assumed to be solely due to

detection of mycobacterium DNA, but other studies have identified

a role for mitochondrial stress and ensuing release of mtDNA into

the cytoplasm [53]. This observation is strain-dependent but does

propose a role for mitochondrial stress and dynamics on the

M. tuberculosis-induced release of mtDNA. Previous work has

observed cytochrome c release from mitochondria in cells infected

with M. tuberculosis, indicating that there may be a possible role for

BAX/BAK-dependent mitochondrial permeabilisation (discussed in

detail later) in infection-related mtDNA release [54] (Fig 2).

Pathogen-infected cells often secrete IL-1b due to inflammasome

activation. A recent report by Aarreberg et al discovers a link

between IL-1b secretion in infected cells, which can then activate a

cGAS-STING-dependent type I interferon response in surrounding

bystander cells. Interestingly, IL-1b stimulation of bystander cells

increases mitochondrial mass, decreases mitochondrial membrane

potential and induces mtDNA release [55]. However, mtDNA

release is observed in the absence of detectable cytochrome c release

and cell death, suggesting that this is not the mechanism of mtDNA

release, although it does not rule out limited mitochondrial perme-

abilisation seen by us and others in the context of infection (see

below). This is not the first time IL-1R signalling has been impli-

cated in cell-intrinsic defence [56–58], but it is the first to suggest

that mtDNA release plays a key role in the initiation of cGAS-STING

signalling in the bystander cells.

mtDNA activation of cGAS-STING during cell death
During programmed cell death, the pro-apoptotic proteins BAX and

BAK permeabilise the mitochondrial outer membrane to allow the

passage of pro-apoptotic molecules to move from the inner

membrane space into the cytosol, where they can initiate a caspase

cascade, resulting in a rapid cell death [59]. White et al and Rong-

vaux et al showed that in the absence of apoptotic caspase activa-

tion, mtDNA activates cGAS in a promiscuous manner, which

in vivo leads to mildly elevated IFN-b protein levels in blood, though

a level sufficient to induce the expression of interferon-stimulated

genes [37,38] (Fig 3). This suggests that apoptotic caspases play a

crucial role in dampening type I interferon responses in dying cells,

maintaining the “immune-silent” nature of apoptosis (Fig 3).

Further work has shown that apoptotic caspases directly cleave

cGAS, IRF3 and mitochondrial anti-viral signalling protein (MAVS),
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Figure 2. mtDNA-dependent activation of cGAS-STING signalling.

Various mitochondrial stresses including bacterial or viral infection can lead to mtDNA release. Alternatively, activation of BAX and BAK leads to outer mitochondrial
membrane permeabilisation (MOMP) and mtDNA release. Once cytoplasmic, mtDNA can bind the DNA sensing protein cGAS that catalyses the production of the secondary
messenger 2030 cyclic GMP–AMP (2030cGAMP) from ATP and GTP. cGAMP binds the adaptor molecule STING on the ER leading to activation of TBK1 kinase. Active TBK1
phosphorylates the transcription factor IRF3 initiating a type I interferon response.
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key proteins required for the production of type I interferon [60],

supporting the notion that caspases dampen the immune response

during cell death. High-resolution imaging studies have further

expanded our understanding of how mtDNA is released from the

mitochondria during cell death. We and others recently showed that

BAX and BAK can permeabilise the mitochondrial outer membrane,

but in the context of caspase inhibition these pores grow dramati-

cally, sufficient to allow inner membrane herniation and extrusion

of mtDNA [61–63] (Fig 3). We found that under caspase-inhibited

conditions, mitochondrial permeabilisation leads to down-regulation

of inhibitor of apoptosis proteins (IAPs), NF-jB-inducing kinase

(NIK) activation and an NF-jB transcriptional program, in addition

to mtDNA release-induced cGAS-STING activation [64]. The cytoki-

nes and chemokines up-regulated via NF-jB after mitochondrial

permeabilisation can serve to promote macrophage activation

[64,65]. This leads to robust anti-tumour effects, highlighting a

potential therapeutic role for caspase inhibition in cancer treatment

[64]. Collectively, these results help to reconcile how predominantly

cytosolic cGAS can be activated by mtDNA during cell death. Never-

theless, a number of unresolved questions remain. Firstly, is inner

membrane permeabilisation a regulated process, and if so, how? A

rapid inner membrane permeabilisation of sufficient size to allow

the passage of small ions is observed minutes after outer membrane

permeabilisation [61], but is insufficient to allow mtDNA nucleoid

extrusion and is probably only transient, as inner membrane poten-

tial can be maintained after outer membrane permeabilisation [66–

69]. Secondly, there are cell type differences in the degree of inner

membrane permeabilisation, as different studies report varying

degrees of mtDNA release during cell death [61,62], implying that

specific cell-intrinsic factors play a role in inner membrane perme-

abilisation. Finally, the physiological relevance of cell death-related

mtDNA release is unknown. Most cell types undergo rapid and

complete caspase-dependent apoptosis in vivo, presumably limiting

any potential for mtDNA-driven inflammation during cell death.

However, some cell types, for instance cardiomyocytes, display defi-

cient caspase activity downstream of mitochondrial permeabilisa-

tion [70]. Such cells might generate a greater type I anti-viral

interferon response after mitochondrial permeabilisation. Alterna-

tively, cGAMP might transfer from apoptotic to healthy cells, serv-

ing as an “early warning” defence system, instructing healthy cells

to transcribe genes important for their survival (Fig 4) [71,72].

In addition to DNA, mitochondria also possess dsRNA which is

known to be potently immunogenic [73]. Mitochondrial dsRNA

arises from transcription of both the heavy and lights strands of

mtDNA; however, although the light strand is rapidly degraded the

heavy strand is not, and nearly all the dsRNA detected in the cyto-

plasm are of mitochondrial origin. The mitochondrial helicase SUV3

and polynucleotide phosphorylase PNPase dampen the accumula-

tion of dsRNA, but when these are depleted, dsRNA accumulates in

the cytoplasm where it activates a type I interferon response driven

by the dsRNA receptor MDA5 [74]. Silencing of BAX and BAK

suppresses the type I interferon response, strongly suggesting that

BAX/BAK-dependent mitochondrial outer membrane permeabilisa-

tion is responsible for mitochondrial dsRNA escape into the cyto-

plasm [74] Furthermore, patients with mutations leading to a

decrease in PNPT1, the gene that encodes PNPase protein, exhibit

greater accumulation of dsRNA and elevated interferon levels in

their serum [74].

Mitochondrial outer membrane permeabilisation is a rapid and

complete event, spreading to all mitochondria in a cell. Following

formation of BAX/BAK pores, pro-apoptotic proteins such as cyto-

chrome c are released from the intermembrane space where they

initiate the caspase cascade, culminating in cell death. However, we

have found that under conditions of sub-lethal stress, a limited

number of mitochondria in a cell can undergo permeabilisation,

called minority MOMP, leading to genomic instability and
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Figure 3. BAX/BAK-dependent initiation of inflammation.

Following a pro-apoptotic stress, BAX and BAK are activated leading to mitochondrial outer membrane permeabilisation. This enables the release of caspase-activating
proteins from the mitochondrial intermembrane space. Following this, macropores form on the mitochondrial outer membrane causing extrusion and permeabilisation of
the inner membrane. This enables release of mtDNA. Mitochondrial double-stranded RNA (dsRNA) can also be released. Collective release of these molecules triggers
inflammation via MAVS, cGAS-STING and NF-jB. Caspase activity is anti-inflammatory, in part, through direct cleavage and inactivation of inflammatory signalling
molecules.
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transformation [75]. A recent report by Brokatsky et al reveals a

link between pathogen invasion and activation of mitochondrial cell

death machinery [76]. In this study, it was found that various patho-

gens can induce limited mitochondrial permeabilisation. It remains

unclear how pathogens can trigger minority MOMP, but neverthe-

less they can, resulting in mtDNA release (presumably through

BAX/BAK pores), stimulating cGAS-STING activation and cytokine

secretion [76].

How else might mtDNA be released from mitochondria? Another

potential mechanism for mtDNA release from mitochondria is

through the mitochondrial permeability transition pore (mPTP)

[77,78]. The exact composition of the pore is unclear, although

there seems to be consensus that cyclophilin D is present [79]. The

mPTP spans the mitochondrial inner membrane and forms in

response to high mitochondrial calcium concentration and various

other cellular stresses. However, the mPTP is predicted to only

allow the efflux of molecules smaller than 1.5 kDa, much smaller

than a mtDNA nucleoid [80,81]. In line with this, studies have

shown that only fragments of mtDNA can pass through the mPTP

[77,82,83]. It remains possible that sustained opening of the pore

can lead to swelling of the mitochondria and subsequent rupture of

the inner membrane, which would permit the efflux of mtDNA into

the cytoplasm. The involvement of mPTP in mtDNA release during

cell death has been ruled out [61], but chitosan, a vaccine adjuvant,

appears to induce a cGAS-STING- and mPTP-dependent type I inter-

feron response. This is possibly due to mtDNA release, though a

direct role for mtDNA has not been rigorously assessed [84]. An

intriguing recent report suggests that cells experiencing mitochon-

drial stress caused by the lack of mitochondrial endonuclease G

release mtDNA through pores formed by oligomers of the voltage-

dependent anion channel (VDAC) [85]. As mitochondrial DNA

release is thought to play a role in the pathogenesis of lupus
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Figure 4. Non-cell autonomous effects of mtDNA.

(A) Upon pathogen encounter, neutrophils can extrude DNA (both nuclear and mitochondrial) that forms an extracellular trap for extracellular microbes. Due to pro-
inflammatory properties, these DNA neutrophil extracellular traps (NETs) can also have pathological effects in diseases such as lupus. (B) mtDNA can transfer via exosomes
or in intact mitochondria to neighbouring cells, impacting on the metabolism and survival of the recipient cell. Inflammatory responses to mtDNA can also have non-cell
autonomous effects. The cGAS-induced secondary messenger cGAMP has been shown to transfer via gap junctions eliciting anti-viral interferon responses in neighbouring
cells.
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[86,87], a role for VDAC pore formation was tested in an in vivo

model of lupus-like disease. Using the VDAC1 oligomerisation inhi-

bitor VBIT-4, the authors were able to reduce lupus-like symptoms

in lupus-prone mice, providing a rationale to target VDAC-mediated

mtDNA release in this disease [85].

Therapeutic targeting of mtDNA-dependent cGAS-STING activity
There is currently intense interest in the development of inhibitors

and activators of the cGAS-STING pathway, depending on the

disease. In humans, the systemic inflammatory disease Aicardi–

Goutières syndrome (AGS) is characterised by mutations in a

number of different genes involved in DNA sensing [88]. For exam-

ple, TREX1, a DNA exonuclease, is frequently mutated in human

patients with AGS and systemic lupus erythematosus (SLE) [89–91],

and co-deletion of cGAS, STING, Interferon-a/b receptor (IFNAR) or

IRF3 rescues this phenotype [92–98]. Accumulation of cytosolic

DNA appears to be a defining characteristic of AGS and SLE, as dele-

tions in DNA- and RNA-related genes including SAMDH1, a DNA

exonuclease and RnaseH2 are frequent [99–102]. Gain-of-function

mutations in STING itself lead to an up-regulation of type I inter-

feron responses and lupus-like symptoms in patients [103,104].

DNase II deficiency in humans leads to autoinflammation with

increased type I IFN [105] and in mice causes arthritis [106]. This is

thought to be due to the lack of self-DNA degradation in dead cells

engulfed by macrophages resulting in sustained cGAS-STING stimu-

lation [98,106,107], and AIM2 inflammasome formation [108,109]

with a possible contribution of endosomal TLRs [108]. Myocardial

infarction (MI) is another condition known to involve a strong

inflammatory component. King et al [110] showed that ischaemic

cell death and engulfment by macrophages drives an IRF3-depen-

dent type I IFN response. Genetic or pharmacological disruption of

cGAS-STING signalling in mice improved their outcomes post-MI,

proposing this signalling axis as suitable for therapeutic intervention

in patients [110,111]. While it is not clear if this is due to mtDNA

release per se, increased mtDNA in plasma from patients with heart

disease has been frequently observed [112–114]. Clearly, inhibiting

the cGAS-STING pathway in these disease settings might be benefi-

cial to patients. Small molecules targeting both cGAS [115,116] and

STING [117] have been developed, with STING antagonists emerg-

ing as the most promising. Blocking the IFNAR receptor to block

interferon signalling in SLE patients had seemed like a viable thera-

peutic route; however, late-stage clinical trials in this area have

failed, prompting more investigation of how important interferon

signalling is in the pathogenesis of SLE.

The ability to turn immunologically “cold” tumours “hot” and

make them more responsive to immunotherapy is a desirable

outcome in cancer treatment. Efficient T-cell responses to tumour

cells is a critical step to durable cancer treatment control [118].

STING is required for spontaneous CD8+ T-cell priming in vivo

[119]. Mechanistically, dying tumour cells transfer their DNA to

antigen-presenting dendritic cells when phagocytosed, eliciting

cGAS-STING-IRF3 signalling leading to an anti-tumour T-cell

response [119–121]. Activation of STING by addition of exogenous

cGAMP can also enhance anti-tumour immunity after irradiation

[120], the first evidence that therapeutic activation of STING may

improve cancer therapy. This effect was later shown to be exclusive

to dendritic cells over macrophages; blockade of the “don’t eat-me”

signal CD47 results in increased tumour-originated mtDNA in the

cytosol of DCs and is required for the cross-priming and type I IFN

response mediated through cGAS [122]. Dying tumour cells trans-

fected with exogenous cytosolic DNA, viral DNA or cyclic dinu-

cleotides (CDNs) have a greater capacity to activate STING

signalling in antigen-presenting cells, enhancing T-cell priming and

expansion of anti-tumour T cells [123]. Therefore, it is also possible

that mtDNA may act as a STING activator in antigen-presenting cells

(APCs) under certain circumstances, for example when apoptotic

caspases are inhibited. Another example of immune cell communi-

cation is in the interaction of T cells with antigen-presenting

dendritic cells. Upon formation of an immunological synapse

between these two cell types, T cells shed extracellular vesicles

(EVs) containing genomic and mtDNA. These EVs are taken up by

the dendritic cell, triggering a cGAS-STING-dependent anti-viral

response, conferring resistance to subsequent viral infection [124].

In the context of cancer treatment, it is plausible that apoptotic cell-

containing dendritic cells could stimulate a similar effect in T cells,

generating longer lived dendritic cells for more durable treatment

responses [125]. Together, these data and many others provide a

rationale for enhancing STING signalling in cancer treatment, and

this is currently under active investigation [126,127].

mtDNA release, cGAS-STING and neurodegeneration
Under normal, homeostatic conditions, damaged or stressed mito-

chondria are eliminated from the cell by a type of mitochondrial-

selective autophagy called mitophagy [128]. Mutations in proteins

involved in mitophagy pathways can contribute to neurodegenera-

tion. This is perhaps best evidenced for PINK1/Parkin-dependent

mitophagy. For instance, loss-of-function mutations in the PINK1/

Parkin pathway of mitophagy associate with early onset Parkinson’s

disease [129–133]. In a simplified view, the kinase PINK1 is acti-

vated on dysfunctional mitochondria where it phosphorylates ubiq-

uitin. Phospho-ubiquitin allosterically activates the E3 ubiquitin

ligase Parkin leading to enhanced mitochondrial ubiquitination that

serves as an autophagic signal to remove the damaged mitochon-

drion [134–136]. Parkinson’s disease is associated with neuroin-

flammation [137], and the serum from Parkinson’s patients is often

enriched for pro-inflammatory cytokines, including TNF, IL-1b, IFNɣ
and IL-6 [138,139]. However, many of the studies elucidating the

mechanistic basis of Parkinson’s have been performed in cultured

cell lines, and despite much effort, the in vivo relevance of PINK1/

Parkin-mediated mitophagy was not well understood, particularly

since mice that lack either PINK1 or Parkin exhibit no Parkinson’s-

like disease phenotypes [140–142]. Knowing that defective mito-

chondria can release innate immune-activating DAMPs, Sliter et al

[143] investigated the effect of exhaustive exercise or mtDNA muta-

tion on inflammation. When challenged with exhaustive exercise,

Parkin�/� or Pink1�/� mice displayed higher serum levels of pro-

inflammatory IL-6 and IFN-b when compared to wild-type mice, in

addition to increased levels of uncleared mitochondria. Remarkably,

this could be completely rescued by deletion of STING or administer-

ing IFNAR-blocking antibody to mice, strongly suggesting that

mtDNA released from damaged mitochondria that are not cleared is

responsible for the inflammation observed in Parkinson’s patients.

Interestingly, the authors also observed increased circulating mtDNA

in Parkin�/� mice following exhaustive exercise, meaning that the

mtDNA is not only extruded from mitochondria but also exits the

cell. Mutator mice expressing a proofreading-defective mtDNA
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polymerase (PolG) accumulate mutations in mtDNA, which instead

of causing neurodegeneration results in dopaminergic neuron loss

and defective movement. While no difference in inflammatory cyto-

kine levels was noted between wild-type, Parkin�/� or mutator mice,

Parkin�/�;mutator mice do have higher serum cytokine levels.

Again, cytokine levels and the movement disorder could be comple-

tely rescued by co-deletion of STING, reinforcing the cGAS-STING

axis as the major player in Parkinson’s-associated inflammation.

However, further work is needed to elucidate the absolute require-

ment for mtDNA over nuclear DNA and the precise mechanism of

how mtDNA is released from the mitochondria.

mtDNA as an inflammasome activator

Inflammasomes are multi-subunit complexes which form in

response to exogenous PAMPs and DAMPs [144]. One of four recep-

tors—absent in melanoma 2 (AIM2), NOD, LRR and Pyrin

domain-containing protein 1 (NLRP1), NLRP3 or NLR family CARD

domain-containing protein 4 (NLRC4), bind to the adaptor molecule

ASC forming a platform for the dimerisation, autoprocessing and

activation of caspase-1. Active caspase-1 can then process pro-IL-1b
and pro-IL-18 into their mature form so they can be secreted (see

Fig 1). The first report of mtDNA acting as an activator of inflamma-

somes came in 2011 when Nakahira et al [145] reported that deple-

tion of proteins involved in autophagy leads to an accumulation of

dysfunctional, persistent mitochondria exhibiting excessive ROS.

These mitochondria were more prone to extrude mtDNA into the

cytoplasm upon stimulation with lipopolysaccharide (LPS) or ATP,

dependent on the ability to from NLRP3 inflammasomes. Interest-

ingly, Nakahira et al suggested that as well as acting downstream of

mtDNA release, NLRP3 also acts upstream, to facilitate mPTP

formation on the mitochondria allowing mtDNA release. However,

as already discussed, whether mPTP is sufficient to allow mtDNA

translocation from the mitochondrial matrix into the cytoplasm is

debatable. Extending this work, the following year Shimada et al

[146] reported that during macrophage apoptosis mtDNA is released

and binds NLRP3. Notably, NLRP3 appears to have a preference for

oxidised mtDNA, clarifying the observations that ROS plays a

crucial role in inflammasome activation [147]. Linking these obser-

vations, deletion of the autophagy receptor p62 prevents mitophagic

clearance of mitochondria damaged by NLRP3 agonists, exacerbat-

ing inflammasome formation and IL-1b secretion [148]. More recent

work has pointed to newly synthesised, oxidised mtDNA as the

species which binds NLRP3 [149]. Zhong et al discovered that levels

of the mitochondrial deoxyribonucleotide kinase CMPK2 increase

upon LPS stimulation. CMPK2 catalyses a step in the synthesis of

the nucleotide cytidine triphosphate, which is rate-limiting for

mtDNA synthesis. Elevated dCTP levels in turn increase mtDNA

replication, which is oxidised by ROS and released into the cyto-

plasm where it can activate NLRP3 and stimulate IL-1b secretion.

However, the role of NLRP3 as a direct sensor of DNA is conten-

tious, as many disparate signals have been reported as the common

signal for NLRP3 activation [144]. Indeed, recent work from the

Chen laboratory has shown that dispersal of the trans-Golgi network

following K+ efflux is the likely common trigger [150].

Supporting the notion that inflammasomes and caspase activity

can act upstream of mtDNA release, there are reports that caspases

cause mitochondrial damage. For example, inflammasome-activated

caspase-1 has been reported to damage mitochondria and promote

the release of cytochrome c, indicative of mitochondrial outer

membrane permeabilisation [151]. The authors suggest that this is

due to mPTP formation, although a role for BAX and BAK was not

rigorously assessed in this work. Impairment of mitophagy was also

implicated, as Parkin was found to be a substrate of caspase-1 in

macrophages, leading to an accumulation of damaged, ROS-produ-

cing macrophages [151]. Furthermore, during infection-related ER

stress, NLRP3 (but not the adaptor protein ASC or caspase-1) is

involved in caspase-2 activation and cleavage of the pro-apoptotic

protein BID, promoting mitochondrial permeabilisation [152].

Neutrophil extracellular traps

So far, we have mainly discussed the cell autonomous role of

mtDNA release; however, it is becoming clear that mtDNA can also

be extruded from the mitochondria, into the cytoplasm and outward

further into the extracellular space. One interesting example of this

is in the generation of neutrophil extracellular traps, and in particu-

lar the role of mtDNA in their formation (Fig 4).

Neutrophils are the first line of attack in infection, capable of

engulfing pathogens and degranulating, the process of releasing

soluble anti-microbials. In 2004, Brinkmann and colleagues discov-

ered that upon stimulation with IL-8, phorbol myristate acetate

(PMA) or LPS, neutrophils extruded vast fibrous networks, which

they termed neutrophil extracellular traps (NETs) [153]. Analysis

of these NETs showed that they contained a variety of microbial-

killing proteins, including elastase, cathepsin G and myeloperoxi-

dase. However, they also contain DNA, as noted by reactivity with

antibodies against histones and DNA intercalating dyes. Successive

work showed that NETs were also enriched for mtDNA [154–156].

NET formation has been well studied in patients with systemic

lupus erythematosus (SLE), an autoimmune condition hallmarked

by the appearance of autoantibodies against dsDNA and RNA-

protein complexes, resulting in elevated type I interferon

responses. A number of studies show that mtDNA is part of NETs

formed in SLE. Caielli et al [87] found that in healthy neutrophils,

mitochondria with oxidative damage are removed not via mito-

phagy, but by extruding their mitochondrial matrix contents,

including TFAM-mtDNA nucleoids, into the extracellular space.

These TFAM-mtDNA nucleoids are devoid of oxidised DNA, and

so do not activate plasmacytoid dendritic cells (pDCs) and thus are

not immunogenic. Healthy neutrophils remove oxidised mtDNA by

signalling PKA phosphorylation of TFAM which initiates its degra-

dation and by shuttling oxidised mtDNA into lysosomes. In

contrast, neutrophils in SLE have reduced PKA activation and so

do not degrade TFAM as efficiently, leading to the extrusion of

immunogenic oxidised mtDNA [87]. Another report reveals ROS to

be an important mediator for neutrophils to produce oxidised

mtDNA-containing NETs in response to stimulation by ribonu-

cleotide immune complexes (RNP ICs) [86]. The authors also

found that injecting this DNA was pro-inflammatory and depen-

dent on the STING pathway revealing a dual role for mitochondria

in providing the source of DNA for NETs and oxidising it for maxi-

mal interferogenic response in SLE [86] (Fig 4). Sustained IFNa
signalling in SLE is also known to deregulate mitochondrial
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metabolism in monocytes, leading to reduced autophagy and an

accumulation of mtDNA in the cytoplasm. This leads to cGAS-

STING activation which promotes secretion of TNF and IL-6 and

the expansion of self-DNA autoreactive lymphocytes [157]. It is

now also appreciated that other cell types, including lymphocytes

and eosinophils, can secrete mtDNA-containing webs which act to

prime type I interferon responses in peripheral blood mononuclear

cells [158,159].

Nuclear DNA is prepared for expulsion as NETs through a highly

regulated process involving decondensation of chromatin and citrul-

lination of histones. Furthermore, plasma membrane permeabilisa-

tion is also regulated, inevitably leading to cell death. Within

minutes of stimulation, neutrophils rapidly produce NETs, whereas

the death of neutrophils (dubbed “NETosis”) occurs ~2 h after

[160]. While these two phenomena are often conflated in the litera-

ture, the timing argues against a general lytic mechanism of mtDNA

release. In fact, release of mtDNA as NETs seems to be energy-

dependent [161]. The precise mechanism of mtDNA escape during

NET formation remains to be elucidated; one possibility is that it

may be due to BAX/BAK pore formation on the mitochondrial outer

membrane [61,62], although this seems unlikely as this would

induce a rapid cell death.

mtDNA and TLR9

The Toll-like family of receptors (TLR) recognise a plethora of dif-

ferent bacterial features to instigate innate immunity. TLR9 recog-

nises hypomethylated CpG motifs found in bacteria. TLR9 is

expressed primarily in monocytes, macrophages, plasmocytoid

dendritic cells and B lymphocytes. In resting cells, TLR9 resides on

the endoplasmic reticulum, but recognition of DNA occurs in the

endolysosomes (see Fig 1) [162–165]. DNA-bound TLR9 recruits

MyD88 which activates MAPK and NF-jB, inducing an inflamma-

tory response. In common with bacterial DNA, mtDNA is

hypomethylated at CpG motifs, making it a potent activator of

TLR9 [166,167]. mtDNA detection by TLR9 was first noted in 2010

by Zhang et al, who observed that during systemic inflammatory

response syndrome (SIRS) mtDNA was released into the blood

where it can activate TLR9 on neutrophils [168,169]. In the heart,

autophagy is required to remove damaged mitochondria and main-

tain heart function during hemodynamic stress [170]. However,

when DNase II, a lysosomal DNase, is deleted from cardiac cells,

the mice succumb faster following heart pressure overload [171].

Delving deeper into the mechanism, the authors found that this

was due to an increase in mtDNA which has escaped degradation,

thus activating a TLR9-dependent inflammatory response [171].

Mitochondrial DNA released from dying cells or as part of NETs

can form a complex with the anti-microbial peptide LL-37. This

mtDNA:LL-37 complex evades degradation by DNase II and can

activate TLR9 on pDCs, neutrophils and endothelial cells to exacer-

bate atherosclerosis [172]. High-mobility group box 1 (HMGB1) is

a DNA-binding protein released from necrotic [173] and cytokine-

stimulated cells [174]. HMBG1 binds a receptor, called RAGE, lead-

ing to inflammatory signalling. In particular, HMGB1 has been

shown to be released from pDCs following stimulation with CpG

oligodeoxynucleotides (ODNs). CpG-ODNs can bind and activate

TLR9, but when complexed with HMGB1 the inflammatory

response is augmented through HMGB1 activation of RAGE [175].

In an analogous manner, TFAM co-operates with mtDNA released

from necrotic cells to increase pro-inflammatory signalling in pDCs

through RAGE and TLR9 [176,177].

TLR9 has been particularly well studied in liver pathologies. In

liver cancer, hypoxia triggers the translocation of mtDNA and

HMGB1 into the cytoplasm of cancer cells to activate TLR9, result-

ing in tumour cell proliferation [178]. TLR9 is crucial for the devel-

opment of acetaminophen-induced hepatotoxicity [179] and

fibrosis [180]. Development of non-alcoholic steatohepatitis

(NASH) involves innate immunity, with hepatic stellate cells and

macrophage-like Kupffer cells being particularly relevant. Mice fed

a choline-deficient amino acid-defined diet develop NASH, whereas

TLR9�/� mice do not, implicating TLR9 as a requirement for

NASH development [181]. The precise ligand for TLR9-derived

liver disease was poorly understood, although the observation that

NASH patients had higher mitochondrial mass, but reduced respi-

ration, suggested that mitochondria may play a role [182]. In line

with these observations, Garcia-Martinez et al [183] found that

mice and human patients with NASH exhibited higher levels of

oxidised mtDNA in hepatocytes and plasma. As the oxidisation of

mtDNA increases its ability to activate TLR9, the authors con-

firmed that was the case. Importantly, mice dosed with a TLR9

antagonist displayed reduced symptoms of NASH, validating the

importance of mtDNA release and TLR9 signalling in the pathogen-

esis of NASH [183]. NASH is characterised by different forms of

cell death, most prominently apoptosis [184] and necrosis

[185,186]. In hepatocytes, mitochondrial permeabilisation results

in an increase of DNase II activity, and knockdown of DNase II

switches the mode of cell death to a RIP1-dependent non-apoptotic

form [187]. Importantly, this is due to the release of mtDNA after

mitochondrial permeabilisation, which triggers TLR9 signalling and

subsequent IFNb secretion. In mice fed a high-fat diet, a model of

NASH, DNase II activity is diminished, providing a mechanistic

link as to how necrosis of hepatocytes can augment NASH symp-

toms in patients [187]. It is unclear why the release of mtDNA trig-

gers either cGAS-STING or TLR9 signalling in different studies;

however, it may be due to different cell types, length or oxidation

status of mtDNA, activity of DNA nucleases or different cellular

compartments.

Mutations in OPA1, a protein required for mitochondrial inner

membrane fusion and cristae formation, have been reported to

cause mtDNA instability [188–191]. Deletion of OPA1 in skeletal

muscle, a tissue with high metabolic demands, predictably results in

mitochondrial dysfunction, mtDNA stress and inflammation leading

to reduced growth and early death in mice [192,193]. Interestingly

however, OPA1 deletion leads to disruption of mitophagy due to

impaired autophagic flux resulting in higher levels of dysfunctional

mitochondria in these tissues [194]. When mtDNA localisation was

examined, following OPA1 deletion there is high co-localisation of

mtDNA and TLR9, implicating TLR9 as the driver of OPA1-deletion

inflammation [194].

Transfer of mtDNA between cells

So far, this Review has mainly focussed on the cell-intrinsic biologi-

cal effects of mtDNA release. However, it is possible that released
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mtDNA nucleoids could move from one cell to another, thus

“spreading” the inflammatory signal across a population of cells. It

is now well established that mitochondria, including mtDNA, can be

transferred between cells (Fig 4). A seminal study in 1989 was the

first to describe such a phenomena, where cells devoid of mtDNA

(q0 cells) and thus lacking respiratory competence could be repopu-

lated with mitochondria from other cell lines [195]. More recent

work has shown that following stroke, whole mitochondria can be

transferred from astrocytes to neurons, a process proven to be bene-

ficial to recovery [196]. In cancer models, q0 cells have delayed

tumour growth, likely due to defects in energy production. Horizon-

tal transfer of mitochondria from cells in the tumour microenviron-

ment restored respiration in q0 cells and instigated tumour growth

[197]. Horizontal transfer of mitochondria could occur through a

number of different mechanisms. Firstly, cancer cells can form

tunnelling nanotubes with cells in the tumour microenvironment,

through which cytoplasmic contents, including mitochondria, can

be transferred [198]. Tunnelling nanotubes form between endothe-

lial cells and cancer cells to transfer mitochondria, conferring

chemoresistance to the cancer cell [199] but also between early

apoptotic cells and healthy cells, where mitochondrial transfer can

reverse apoptosis [200]. Secondly, mtDNA has been proposed to be

packaged into extracellular vesicles (EVs). Specifically, cancer-asso-

ciated fibroblasts can package entire mitochondrial genomes into

EVs which then fuse with cancer cells to transfer mtDNA. Impor-

tantly, the size of these EVs, ~100 nm, is far below the size of a

mitochondria, so making it unlikely that an entire mitochondria is

transferred in this manner [201]. However, mtDNA nucleoids are

within these size constraints [21]. It is important to note that other

studies see transfer of entire mitochondria between cells, and so

whether these or just mtDNA genomes are transferred is controver-

sial [202]. Thirdly, mitochondria can be directly transferred between

cells through connexin 43 gap junctions, as had been seen between

bone marrow-derived stromal cells and pulmonary alveoli during

lung injury [203]. Interestingly, transplanting tumour or embryonic

stem cells into hosts with the same nuclear DNA background but

different mtDNA from allogenic mouse strains resulted in rejection

[204]. Mechanistically, this is dependent on MyD88, the adaptor

molecule required for TLR9 signalling, suggesting that TLR9 may be

the PRR in this situation [204]. However, whether or how mtDNA is

released from these cells is unknown, but it is clear that allogenic

mtDNA can trigger innate immune pathways. This hints at the

intriguing notion that inflammation could spread between cells via

detection of mtDNA, perhaps through connexin 43 gap junctions, in

a similar manner to the observation that cGAMP can transfer to acti-

vate STING in neighbouring cells [71] (Fig 4). Contrary to this is

data showing that cell-free mtDNA (for example, as seen in sepsis)

can actually suppress inflammation [205]. Increased serum concen-

tration of mtDNA is associated with a poorer outcome in sepsis

patients, and injection of mtDNA in mice suppresses the adaptive

immune response in a TLR9-dependent manner [205]. Immunosup-

pressive markers, such as an increase in PD-L1 expression in the

spleen, are seen in mice injected with mtDNA, which is reflective of

what is seen in sepsis patients [205]. Clearly, there is conflicting

data on the immunostimulatory or immunosuppressive role of cell-

free mtDNA, which may depend on pathophysiological context;

nevertheless, release of mtDNA appears to potently affect the

immune system.

Conclusions and future perspectives

Mitochondria are multi-faceted organelles orchestrating key events

in both life and death. They represent a rich source of DAMPs which

can potently trigger the innate immune system, such as ATP, formyl

peptides and mtDNA. Possibly stemming from its bacterial origin,

mtDNA is particularly effective at initiating inflammatory and anti-

viral signalling.

The last number of years has seen an explosion in interest in

how mitochondria initiate innate immunity in the context of

pathogen invasion, cell death and pathology. However, many of

these studies leave us with unresolved questions as to precisely

how mtDNA is extruded from the mitochondria. In the context of

cell death, it is now clear that BAX and BAK form the pores on the

mitochondrial outer membrane through which the inner membrane

herniates, leading to mtDNA release, although how the inner

membrane permeabilises is as yet not fully resolved [61,62]. Many

other studies have suggested that the mPTP is involved in various

contexts, but again this is controversial. Clearly, further investiga-

tion is required, whether to determine a more universal role for

BAX/BAK-dependent mtDNA release, utilising our current knowl-

edge of the nature of the mPTP, or whether an altogether unknown

mechanism is involved.

It is also apparent that cellular context will determine how

mtDNA causes inflammation. cGAS-STING signalling seems to be

widely available across most cell types, a notable exception being

some transformed cells. However, TLR9 protein expression

appears to be restricted to immune cells, as does expression of

inflammasome components. Perhaps most interesting will be

determining what the outcomes of triggering innate immunity

with cytosolic or cell-free mtDNA are. For example, in the context

of cell death, does production of cGAMP in apoptotic cells transfer

to healthy apoptotic cells via gap junctions to promote a death-

resistant state, in a manner similar to what has been observed in

astrocytes [71]? Pathogen invasion stimulates a limited degree of

mtDNA release by hijacking the apoptotic machinery, so it is plau-

sible to see how this might act as a cell-intrinsic warning system,

but it will be fascinating to understand how this functions in the

context of a whole tissue. Furthermore, can we leverage what we

have learnt about anti-viral signalling during cell death to enhance

anti-cancer therapy by inhibiting caspases? Likewise, will our

understanding of how mtDNA and STING function in neurodegen-

eration lead to novel therapeutic strategies to enhance healthy

ageing [143]? Along these lines, mitochondrial dysfunction has

been shown to induce a specific form of senescence termed MiDAS

(mitochondrial dysfunction-associated senescence) [206]—given

the links between ageing, senescence and inflammation, it is

tempting to hypothesise that mtDNA plays a role in the initiation

of this phenotype.

A broad spectrum of pathologies, from cancer, to autoimmunity

and ageing all have aberrant mtDNA release as a driver or contribu-

tor of disease. Future work aimed at understanding how mtDNA is

involved will no doubt afford us new therapeutic avenues with

which to treat patients.
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In need of answers

(i) Why do different tissue and cell types respond to cytosolic mtDNA
through different pathways?

(ii) Can mtDNA release be harnessed therapeutically for treatment of
inflammatory diseases or cancer?

(iii) Where is cGAS located in the cell?
(iv) What are the physiological, non-lethal effects of mtDNA release

into the cytoplasm?
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