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 24 
Abstract 25 

Through their many and varied metabolic functions, mitochondria power life. Paradoxically, 26 

mitochondria also have a central role in apoptotic cell death. Upon induction of 27 

mitochondrial apoptosis, mitochondrial outer membrane permeabilization (MOMP) usually 28 

commits a cell to die. Apoptotic signalling downstream of MOMP involves cytochrome c 29 

release from mitochondria and subsequent caspase activation. As such, targeting MOMP in 30 

order to manipulate cell death holds tremendous therapeutic potential across different 31 

diseases, including neurodegenerative diseases, autoimmune disorders and cancer. In this 32 

Review, we discuss new insights into how mitochondria regulate apoptotic cell death. 33 

Surprisingly, recent data demonstrates that besides eliciting caspase activation, MOMP 34 

engages a variety of pro-inflammatory signalling functions. As we highlight, together with 35 

new findings demonstrating cell survival following MOMP, this pro-inflammatory role 36 

suggests that mitochondria-derived signalling downstream of pro-apoptotic cues may also 37 

have non-lethal functions. Finally, we discuss the importance and roles of mitochondria in 38 

other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis. 39 

Collectively, these new findings offer exciting, unexplored opportunities to target 40 

mitochondrial regulation of cell death for clinical benefit. 41 

 42 

 43 

 44 

  45 
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[H1] Introduction 46 

 Mitochondria are essential for life. Positioned at the heart of cellular metabolism, 47 

they serve a key role in ATP generation via oxidative phosphorylation. Beyond their many 48 

core metabolic functions, mitochondria are implicated in an expanding array of cellular 49 

processes, ranging from inflammation to regulation of stem cell generation 
1,2

. What may 50 

seem as a paradox, mitochondria are often essential for cell death.  51 

 52 

 Regulated cell death underpins health; for example, inhibition of cell death 53 

promotes cancer and auto-immunity whereas excessive cell death contributes to 54 

neurodegenerative diseases, including Parkinson disease, Alzheimer disease, amyotrophic 55 

lateral sclerosis and Huntington disease. Consequently, considerable interest has centred 56 

upon targeting of mitochondria to manipulate cell death in disease. Validating this rationale, 57 

recently developed anti-cancer drugs called BH3-mimetics [G] sensitize cells to 58 

mitochondrial-dependent death, displaying potent anti-tumour activity 
3,4

. The role of 59 

mitochondria in cell death is unequivocally established in apoptosis, where mitochondrial 60 

outer membrane permeabilization (MOMP) driven by effector pro-apoptotic members of 61 

the BCL-2 family of proteins (prominently BAX and BAK; Box 1) initiates a signalling cascade 62 

that leads to cell death; although, as we have now become to appreciate, induction of 63 

MOMP is not synonymous with apoptosis and commitment of a cell to die is not definitive 64 

downstream of MOMP. In addition, MOMP has other consequences beyond execution of 65 

cell death, including induction of pro-inflammatory signalling. Finally, while apoptosis is a 66 

major form of regulated cell death, it is by no means the only one. More recently described 67 

regulated cell death modalities include necroptosis, pyroptosis and ferroptosis. 68 

Mitochondria have also been implicated in these additional modalities of regulated cell 69 

death, but their roles are still poorly defined and appear less conspicuous.  70 

  71 

 In this Review we discuss how mitochondria contribute to regulated cell death, 72 

placing this contribution in the context of health and disease. Specifically, we highlight new 73 

insights into how mitochondria initiate apoptosis, and discuss their parallel role in eliciting 74 

pro-inflammatory signalling activity with important consequences for physiology. Taken 75 

together with recent studies showing heterogeneity in MOMP between mitochondria within 76 

a cell treated with pro-apoptotic stimuli, we highlight that mitochondrial permeabilization 77 
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can exert various non-lethal signalling functions. We then discuss the contribution of 78 

mitochondria to more recently described types of regulated cell death, highlighting 79 

mitochondria as a central nexus between different cell death modalities. 80 

 81 

[H1] Mechanisms of mitochondrial apoptosis 82 

 Apoptotic cell death is a major form of regulated cell death that has central roles in 83 

many processes ranging from embryonic development to immune homeostasis 
5

 . As we 84 

now discuss, in many instances, mitochondria are crucial for the initiation of apoptosis. 85 

 86 

[H2] Apoptotic signalling. 87 

 There are two main apoptotic signalling pathways: the extrinsic (also called death-88 

receptor) and the intrinsic, or mitochondrial, pathways of apoptosis (Figure 1). Both 89 

converge upon activation of caspase 3 and caspase 7. As proteases, these executioner 90 

caspases cleave hundreds of different proteins causing the biochemical and morphological 91 

hallmarks of apoptosis 
6
. The extrinsic pathway is activated at the plasma membrane by 92 

death receptor ligands binding to their cognate receptors, leading to activation of caspase 8 93 

(a component of a complex known as the death inducing signalling complex (DISC) [G]) 7. 94 

Active caspase 8 propagates apoptosis by cleaving the pro-caspase 3 and pro-caspase 7, 95 

causing their activation (Figure 1).  96 

 97 

 Diverse cellular stresses, for instance growth-factor deprivation or DNA damage, kill 98 

by the mitochondrial pathway of apoptosis. The mitochondrial pathway requires MOMP to 99 

release soluble proteins from the mitochondrial intermembrane space leading to cell death 100 

(Figure 1). Amongst these intermembrane space proteins, cytochrome c — an essential 101 

component of the electron transport chain — binds the adaptor molecule APAF-1 forming a 102 

complex called the apoptosome 
8,9

. The apoptosome, in turn, binds to and activates the 103 

initiator caspase 9, which subsequently cleaves and activates the executioner caspases. 104 

MOMP also causes the release of proteins including SMAC [G] and OMI [G] that block the 105 

caspase inhibitor XIAP [G] , facilitating apoptosis. The extrinsic apoptotic pathway crosstalks 106 

to the mitochondrial pathway by caspase 8-mediated cleavage of BID, a pro-apoptotic BH3-107 

only member of the BCL-2 family (Box 1) , which generates tBID that potently induces 108 

MOMP (Figure 1).  109 
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 110 

 With some notable exceptions that we will later discuss, MOMP typically commits 111 

cells to death, even in the absence of caspase activity (this phenomenon is known as 112 

caspase-independent death). Thus, MOMP is considered a point-of-no-return in apoptosis 113 

execution 
10-12

. Consistent with MOMP being the point of commitment to cell death, mice 114 

deficient in caspase activity associated with the mitochondrial pathway of apoptosis (e.g. 115 

APAF-1-/-
 and caspase-9-/-

) display much milder developmental defects than MOMP-116 

inhibited (BAX-/-, BAK-/-
) mice 

13-18
. The reason for MOMP being able to mediate caspase-117 

independent cell death is overall metabolic catastrophe, related to the fact that often all 118 

mitochondria undergo MOMP during apoptosis 
19

 and their progressive dysfunction 119 

following MOMP causes widespread ATP loss 
20

. Because MOMP serves to commit a cell to 120 

die, it is tightly regulated, primarily by members of the BCL-2 protein family (Box 1).  121 

  122 

[H2] Mechanisms of MOMP. 123 

 During mitochondrial apoptosis, activation of the pro-apoptotic effectors BAX and 124 

BAK is usually essential for MOMP and cell death 
21

. BAX and BAK are largely considered 125 

redundant because only upon their combined loss are cells resistant to mitochondrial 126 

apoptosis and extensive developmental defects are observed 
16,17,21

. Nevertheless, 127 

differences for BAX versus BAK in mitochondrial apoptosis have been reported in some 128 

studies 
22,23

. For example, BAX and BAK display a differential requirement for the 129 

mitochondrial porin VDAC2 in their ability to induce apoptosis: while VDAC2 associates with 130 

both proteins, VDAC2 is required for BAX, but not BAK, to induce apoptosis 
24-26

. 131 

Importantly, such differences can govern the effectiveness of chemotherapy responses that 132 

often require mitochondrial apoptosis 
22

.  133 

 In healthy cells, BAX localises to the cytoplasm and BAK to the mitochondria, 134 

however, both can shuttle between the mitochondria and cytoplasm 
27-29

 (Figure 2). Under 135 

basal conditions BAX and BAK are inactive. Following activation, BAX accumulates at the 136 

mitochondria. BAX and BAK can be directly activated by binding a subclass of BH3-only 137 

proteins called direct activators (BID, PUMA and BIM) 
30

. Structural studies have 138 

demonstrated that the direct activator BH3-domain binds within the hydrophobic groove of 139 

BAX and BAK, leading to extensive conformational changes allowing activation 
31-33

. This 140 

structural information has guided the development of modified BH3-peptides derived from 141 
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BH3-only proteins that block BAK activation, providing proof-of-concept for therapeutic 142 

targeting of this step to block cell death 
34

.  143 

 144 

 Experiments with chemically stabilised BH3-peptides also enabled a discovery of a 145 

second BH3-binding site in BAX
35

. This second BH3-binding site is distant from the BAX 146 

hydrophobic groove, located in the amino-terminus of the protein, and it promotes BAX 147 

activation through an allosteric conformational change 
35,36

. Notably, BAX-activating small 148 

molecules that target this amino-terminal site and promote BAX activation display potent 149 

anti-tumour activity 
37

. Reconciling a requirement for two activation sites, recent data 150 

supports a sequential model of BAX activation in which BH3-proteins first bind the amino-151 

terminal site, facilitating BH3-binding to the hydrophobic groove for full BAX activity 
38

. Of 152 

note, there is evidence that BH3-only proteins are not absolutely essential for BAX and BAK 153 

activation (see Box 1). During activation, BAX and BAK expose their BH3-domains that can 154 

further propagate their own activity 
36,39

. Once activated, BAX and BAK homodimerize and 155 

these dimers, form higher-order oligomers that are essential for MOMP 
40-44

 (Figure 2).   156 

 157 

 How do active BAX and BAK permeabilize the mitochondrial outer membrane, 158 

initiating cell death? Consensus to this long-standing question centres on activated BAX and 159 

BAK inducing lipidic (toroidal) pores in the mitochondrial outer membrane (Figure 2). Such 160 

lipidic pores are formed by fusion of the inner and outer leaflets of membranes, which is 161 

promoted and stabilised by protein insertion. Indeed, studies using synthetic liposomes and 162 

mitochondrial outer membrane-derived vesicles demonstrate that BAX can induce large 163 

(>100nm) membrane pores visible by cryo-electron microscopy that grow over time 
45,46

. 164 

Moreover, BAX pores are tuneable in size dependent on BAX concentration 
46

. Importantly, 165 

super-resolution microscopy has enabled direct visualisation of BAX-mediated pores in 166 

apoptotic cells 
47,48

. On apoptotic mitochondria, BAX localises in heterogenous ring-like 167 

structures, roughly approximating in size to holes observed in mitochondrial outer 168 

membrane-derived vesicles. Formation of such rings on apoptotic mitochondria was 169 

associated with membrane permeabilization, further supporting permeabilization of the 170 

mitochondrial outer membrane via lipidic pore formation
47

.  171 

 172 
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 Extensive genetic and biochemical data firmly establish BAX and BAK as central 173 

effectors of MOMP. However, other proteins can also cause MOMP. Particular interest has 174 

focused on BOK, a BAX/BAK-like BCL-2 protein, since recent studies have demonstrated that 175 

BOK can induce MOMP and cell death in the absence of BAX and BAK 
49,50

. Genetic support 176 

for this comes from the finding that BOK deficiency exacerbates the developmental defects 177 

observed in Bax-/- Bak-/- 
double knock out mice 

16
. Nevertheless, BOK induced MOMP differs 178 

from classical BAX/BAK-dependent MOMP in many ways. For instance, unlike BAX and BAK, 179 

the pro-apoptotic activity of BOK does not appear to be regulated by BCL-2 proteins in any 180 

way 
49,51

. In vitro liposome and mitochondrial permeabilization assays demonstrate that 181 

BOK is inherently active 
49,52

. This constitutive activity relates to the intrinsic instability of 182 

the BOK hydrophobic core such that it can mediate MOMP independent of BH3-only 183 

proteins
52

. Consistent with BOK having constitutive pro-apoptotic activity, in healthy cells 184 

BOK undergoes ER associated degradation [G] (ERAD) that maintains it at low levels 
49

. 185 

However, because BOK is expressed in many healthy tissues, additional regulatory 186 

mechanisms must exist to counter its pro-apoptotic activity 
53

.  187 

 188 

 Non-BCL-2 family proteins can also induce MOMP. Specific members of the 189 

gasdermin protein family exhibit pore-forming activity upon cleavage. As we will discuss 190 

later, cleavage of Gasdermin D (GSDMD) is essential for an inflammatory type of cell death 191 

called pyroptosis. During mitochondrial apoptosis, caspase 3-mediated cleavage of 192 

Gasdermin E (GSDME, also called DFNA5) liberates a pore-forming amino-terminal fragment 193 

that can promote plasma membrane permeabilization during apoptotic cell death 
54,55

. 194 

GSDME mediated plasma membrane permeabilization induces a necrotic-like cell death that 195 

has been proposed to contribute to the chemotherapy-associated toxicity 
54

. This GSDME 196 

amino-terminal cleavage fragment can also localise to the mitochondria and cause MOMP 197 
56

. In this manner, GSDME is proposed to elicit a feed-forward mechanism that enhances 198 

caspase activation during apoptosis. In an analogous manner, during pyroptosis, the GSDMD 199 

amino-terminal cleavage fragment can also induce MOMP 
56

 (see also below). Although 200 

requiring further investigation, given their established pore-forming properties, the amino-201 

terminal fragments of gasdermins likely directly permeabilize mitochondria independently 202 

of BAX and BAK. 203 

 204 
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[H2] Dynamics of MOMP. 205 

 Independent of apoptotic stress, MOMP is usually rapid and complete — all 206 

mitochondria undergo MOMP over a ten-minute window 
19,57

. Emphasising an earlier point, 207 

the extensive nature of MOMP is likely central to it being a point-of-no-return in apoptotic 208 

commitment. High-speed imaging of mitochondrial apoptosis has shown that MOMP can 209 

initiate at a discrete sub-population of mitochondria, before progressing in a wave-like 210 

manner across all the mitochondria in the cell 
58-60

. Using frog egg extracts in vitro, MOMP 211 

has been found to propagate between mitochondria as a trigger wave, maintaining constant 212 

speed and amplitude over a long distance; this may facilitate the execution of apoptosis in 213 

large cells such as neurons 
61

.  214 

 215 

 Why is MOMP rapid and extensive? One model proposes that MOMP initiates a 216 

caspase-dependent feed forward loop, possibly by caspase-mediated BID cleavage that 217 

promotes further MOMP. However, while caspase-activity supports MOMP trigger wave 218 

propagation in vitro, blocking caspase activity following a mitochondrial apoptotic stimulus 219 

neither impacts on the kinetics nor on the extent of MOMP in cells 
19

. Furthermore, 220 

inhibiting caspase activity following a mitochondrial apoptotic stimulus usually doesn't 221 

protect against cell death. These findings argue against an important role for caspase 222 

activity in amplifying MOMP. Other proposed mechanisms include reactive oxygen species 223 

(ROS)-dependent feed-forward propagation of MOMP, although how ROS promotes this 224 

remains unclear 
62

 Perhaps the most likely explanation centres on the ability of active BAX 225 

and BAK to activate further BAX and BAK molecules 
36,39

. Akin to falling dominos, this would 226 

be predicted to rapidly and extensively drive MOMP. 227 

 228 

[H2] Inner mitochondrial membrane remodelling during apoptosis.  229 

 Soluble mitochondrial intermembrane space proteins are released following MOMP 230 

irrespective of protein size 
63

. However, some studies have shown that the release of 231 

cytochrome c can be further regulated even following MOMP, affecting caspase activation 232 

and apoptosis 
64-68

. This is because the majority of cytochrome c resides within 233 

mitochondrial cristae — dynamic inner mitochondrial membrane folds that harbour 234 

electron transport chain components. Cristae accessibility to the intermembrane space is 235 

regulated by cristae junctions 
69

. As such, cytochrome c has been proposed to be trapped 236 



 9

within cristae in healthy cells, necessitating widening of the cristae junctions in order to 237 

allow efficient cytochrome c release. Indeed, following MOMP, extensive cristae 238 

remodelling has been observed. How is this regulated? Mitochondria are dynamic 239 

organelles that constantly undergo cycles of fission and fusion. Immediately following 240 

MOMP, extensive mitochondrial fragmentation occurs at mitochondrial–endoplasmic 241 

reticulum (ER) contact sites 
70

, which requires the mitochondrial fission protein DRP-1 
59,67

. 242 

Although dispensable for MOMP 
71,72

, DRP-1 promotes cristae remodelling, which has been 243 

proposed to facilitate cytochrome c release. Several reports suggest that remodelling occurs 244 

via the effect of DRP-1 on the GTPase OPA1. In the intermembrane space, OPA-1 regulates 245 

inner mitochondrial membrane fusion and cristae junction size: oligomers of OPA-1 keep 246 

junctions narrow, whereas OPA-1 oligomer disassembly widens the junctions 
71

. Following 247 

MOMP, OPA-1 is cleaved by different intermembrane space proteases including OMA1, 248 

leading to oligomer disassembly and junction opening 
73-75

. During apoptosis, DRP-1 is 249 

modified with the ubiquitin-like protein SUMO, leading to the stabilization of the 250 

mitochondrial–ER membrane contact sites. This promotes calcium influx into the 251 

mitochondria from the ER, which has been shown to be required for cristae remodelling 
70

. 252 

However, it has also been shown that cristae remodelling mediated by DRP-1 during 253 

apoptosis is independent of OPA-1 and that OPA-1 oligomers can disassemble even in the 254 

absence of DRP-1 (ref. 
76

).  255 

 Regardless of the exact mechanism, the importance of inner membrane remodelling 256 

for mitochondrial apoptosis is controversial. For instance, some studies have shown that 257 

inhibiting components of the cristae remodelling machinery (e.g. DRP-1) has minimal effect 258 

upon the release of cytochrome c, caspase activation and apoptosis 
71,72

. Secondly, inner 259 

mitochondrial membrane remodelling has been reported to occur as a secondary 260 

consequence of caspase activation 
77

. Irrespective of caspase activity, inner mitochondrial 261 

membrane remodelling occurs subsequent to MOMP. Thus, similar to caspase inhibition, 262 

blocking inner mitochondrial membrane remodelling wouldn’t be expected to prevent cell 263 

death unless cells can somehow survive MOMP — an area we will now discuss. 264 

 265 

[H1] Surviving MOMP 266 

 Although MOMP is considered the point-of-no-return in mitochondrial apoptosis, 267 

some exceptions exist, where MOMP occurs to varying degrees with wide-ranging effects, 268 
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beyond lethality, downstream of apoptotic stimuli. It is also now evident that cells are able 269 

to survive MOMP, which can have important impact on physiology. Our discussion centres 270 

on how cells can survive MOMP in three distinct settings: widespread MOMP under caspase 271 

inhibited conditions; limited MOMP; and widespread mitochondrial permeabilization 272 

accompanied by effector caspase activity.  273 

 274 

[H2] MOMP can be heterogeneous, permitting survival and signalling functions.  275 

  MOMP was originally defined as an all-or-nothing event. However, more recently, it 276 

has been shown that the cells can survive MOMP under caspase-inhibited conditions — 277 

when cleavage of cellular components is prevented — and the key to cell survival is the 278 

maintenance of metabolic activity. Glycolytic enzyme glyceraldehyde-3-phosphate 279 

dehydrogenase (GAPDH) can promote cell survival following MOMP, which is dependent on 280 

its well-established glycolytic role in ATP synthesis and through its ability to transcriptionally 281 

stimulate autophagy to remove permeabilized and hence, non-functional, mitochondria via 282 

mitophagy 
78

. Survival under these conditions also tightly correlates with the presence of 283 

intact mitochondria that evaded MOMP, a condition termed incomplete MOMP 
79

. These 284 

intact mitochondria serve as critical pool to re-establish mitochondrial network in the cell, 285 

permitting cell survival (Figure 3a). 286 

 287 

 Although further studies in this area are needed, it is likely that incomplete MOMP 288 

underpins survival in various cell contexts. In support of this, following nerve growth factor 289 

(NGF) deprivation, sympathetic neurons undergo MOMP, but under conditions of caspase 290 

inhibition, NGF re-addition restores intact mitochondria in these neurons to enable cell 291 

survival 
80,81

.   292 

 293 

Variable MOMP is also observed in response to sub-lethal apoptotic stresses 294 

triggered by low doses of cytotoxic drugs like BH3-mimetics or proteasome and mitotic 295 

inhibitors. However, in this case only a small fraction of mitochondria undergoes MOMP 296 

without the execution of cell death, a condition called minority MOMP
82

 (Figure 3b). While 297 

minority MOMP doesn't kill cells, it still engages caspase activity. To permit survival, caspase 298 

activity is likely restrained by multiple mechanisms, including degradation of cytochrome c 299 

upon MOMP leading to reduced caspase activity 
83

, lowered affinity of active (cleaved) 300 
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caspase 9 for the apoptosome
83,84

, restriction of caspase localization 
85

, their turnover 
86

 or 301 

expression of inhibitors to dampen their activity 
87

.  302 

 303 

Minority MOMP-induced caspase activity likely has both positive and negative 304 

consequences. Apoptosis has well-established anti-cancer activity, for instance the tumour 305 

suppressor p53 engages apoptosis to prevent cancer, and anti-cancer treatments often kill 306 

cancer cells through apoptosis. Nevertheless, different studies argue that apoptotic 307 

signalling also has pleiotropic oncogenic effects 
88

. Along these lines, minority MOMP causes 308 

caspase-dependent DNA damage and genomic instability, promoting cellular 309 

transformation
82

. The DNA damaging effects of minority MOMP require activation of 310 

caspase-activated DNAse (CAD) 
82

. Following sub-lethal stress, caspase 3-dependent release 311 

of endonuclease G (Endo G) from the mitochondria can also cause DNA damage 
89

. DNA-312 

damaging effects of sub-lethal caspase activity have also been reported following diverse 313 

apoptotic stimuli, encompassing extrinsic and intrinsic apoptotic triggers 
90-92

. By affecting 314 

genome integrity, minority MOMP might impact on cancer in different ways, for instance by 315 

enhancing its initiation or by promoting the evolution of resistance to apoptosis-inducing 316 

therapies (Figure 3b). However, tumour mutational load resulting from DNA damage is also 317 

responsible for the generation of so called neoantigens [G], which correlate with the 318 

activation of anti-tumour immunity. As proposed elsewhere 93

, potentially the DNA-319 

damaging effects of minority MOMP could also have beneficial effects in cancer therapy by 320 

increasing neoantigen generation.  321 

 322 

At face value, effects of minority MOMP in cancer appear more of an unwanted 323 

glitch of the mitochondrial apoptotic pathway, but does minority MOMP have any 324 

physiological roles? Because it permits caspase activity without cell death, minority MOMP 325 

is ideally suited to initiate non-lethal caspase signalling , which has been implicated in wide-326 

ranging cellular functions such as differentiation and proliferation
94

. Furthermore, as we 327 

discuss in more detail in the following section, MOMP is also a potent inductor of 328 

inflammatory signalling. In this context, a recent study has shown that minority MOMP can 329 

engage innate immune signalling pathways (both caspase-dependent and independent) that 330 

inhibit the growth of diverse intracellular pathogens
95

 (Figure 3b). Dissecting the functions 331 

for minority MOMP remains a major challenge, mostly because it shares the same initiating 332 
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machinery as mitochondrial apoptosis (centring on BAX/BAK activation). Because caspase 333 

substrates downstream of MOMP are dispensable for cell death, where relevant (e.g. CAD in 334 

DNA damage) specific analysis of these substrates should allow genetic definition of 335 

minority MOMP functions in vivo.  336 

Besides identifying physiological functions of mitochondrial heterogeneity in the 337 

event of MOMP, several key mechanistic questions remain to be answered. Most 338 

importantly, why some mitochondria selectively permeabilize and how do these 339 

mitochondria differ compared with those that remain intact? Some level of regulation 340 

presumably exists, as exemplified by the physiological role of minority MOMP in pathogen 341 

defence. One observation is that in the context of incomplete MOMP, intact mitochondria 342 

had higher levels of anti-apoptotic BCL-2 proteins associated with them. Accordingly, 343 

neutralisation of anti-apoptotic BCL-2 function (by BH3-mimetic treatment) converted 344 

incomplete MOMP to complete MOMP, thereby impeding cell survival 
79

.   345 

 346 

[H2] Cell recovery via anastasis. 347 

 To permit survival following extensive MOMP, ideally a cell would require prevention 348 

of caspase activation coupled to a means of generating (or retaining) non-permeabilized 349 

mitochondria. However, recovery from a full-scale apoptosis has been described in 350 

mammalian HeLa cells exposed to ethanol and called anastasis (Greek for ‘rising to life’)
96

. 351 

Generally, ethanol induces MOMP and caspase activation. Intriguingly, removal of ethanol 352 

after caspase activation allowed recovery of intact mitochondria in some cells that enabled 353 

cell survival and proliferation. This recovery was rapid and within 24 hrs following removal 354 

of the apoptotic stimulus the entire mitochondrial population was reinstated. Survival under 355 

these conditions was associated with increased genomic instability, suggesting that 356 

anastasis may be oncogenic
96

. Anastasis was also associated with a specific transcriptional 357 

response programme that led to increased migratory capacity of recovered cells 
97

.  358 

  359 

 Overall, anastasis defies the dogma that MOMP and extensive caspase activity 360 

commits a cell to die. While fascinating, it also poses a number of challenging questions. 361 

Firstly, how can a cell withstand such extensive caspase activity, causing widespread 362 

cleavage of subcellular substrates, yet survive? Secondly, why is the persistence of initiating 363 

apoptotic stimulus (in this case ethanol) required for death even following MOMP initiation 364 
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of caspase activity? Thirdly, how does the mitochondrial population recover so quickly 365 

following MOMP? Given the rapidity of mitochondrial recovery and a requirement to 366 

remove MOMP-inducing stimulus to enable cell survival, does this suggest that MOMP may 367 

even be reversible in some situations? Further supporting a reversible nature of MOMP, a 368 

recent study reported a chemical inhibitor of mitochondrial apoptosis called compound A 369 

that blocks cell death downstream of BAX activation
98

. Compound A exerts cytoprotective 370 

function by targeting succinate dehydrogenase subunit B (SDHB) — a critical component of 371 

complex II in the electron transport chain. This cytoprotective effect is related to inner 372 

mitochondrial membrane remodelling discussed above. By binding SDHB, compound A 373 

maintains electron transport chain function following BAX activation, which is proposed to 374 

inhibit OMA1 protease activity — by preventing generation of ROS, which could activate 375 

OMA1— and in doing so blocking OPA1 processing, inner mitochondrial membrane 376 

remodelling and extensive cytochrome c release. However, an alternative explanation may 377 

be that Compound A prevents MOMP from initially occurring downstream of activated BAX. 378 

Irrespective of its cytoprotective mechanism, in vivo administration of Compound A 379 

displayed beneficial effects in a rat model of Parkinson disease: it reduced the death of 380 

dopaminergic neurons and prevented the onset of Parkinson-like behaviour, implying that 381 

neuronal functionality, at least in the short-term, is maintained
98

. Compound A may 382 

represent a basis to develop therapeutic inhibitors of the mitochondrial apoptotic pathway.  383 

 384 

[H1] MOMP and inflammation 385 

The textbook view of apoptosis is that it is a non-inflammatory, silent form of cell death 
99

. 386 

Intuitively this makes perfect sense — billions of cells in our bodies undergo mitochondrial 387 

apoptosis on a daily basis 
100

. Despite this common view, recent research has shown that 388 

the apoptosis-initiating event, MOMP, is inherently pro-inflammatory (Figure 4).  389 

 390 

[H2] Mechanisms and consequences of MOMP-driven inflammatory signalling.  391 

 Pro-inflammatory effects of MOMP were first observed under conditions of caspase 392 

9 deficiency, most likely because these cells show delayed death allowing inflammation to 393 

be detected 
101,102

. A consequence of increased inflammation in caspase 9-deficient mice 394 

was that these mice displayed enhanced resistance to viral infection and impaired 395 

haematopoietic stem cell function 
101,102

. Both phenotypes are associated with a type I 396 
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interferon [G] (IFN) response that is induced by cyclic GMP-AMP synthase (cGAS)–stimulator 397 

of interferon genes (STING) signalling. The cGAS–STING signalling pathway is a key innate 398 

immune pathway that senses double-stranded DNA (dsDNA) — mostly foreign, coming from 399 

bacteria or DNA viruses — to drive inflammation
103

. Upon DNA binding, cGAS catalyses the 400 

reaction of ATP and GTP to generate the secondary messenger, cyclic guanosine 401 

monophosphate–adenosine monophosphate (cGAMP). cGAMP binds to and activates the 402 

adaptor protein STING, which subsequently activates TBK1 kinase. TBK1 phosphorylates and 403 

activates the transcription factor IRF3 as well as NF-κB leading to a type I interferon 404 

expression.  405 

 BAX and BAK were found to be required for MOMP-induced cGAS–STING activity, 406 

but surprisingly, so was mitochondrial DNA (mtDNA), suggesting that mtDNA is recognized 407 

by cGAS–STING in the context of apoptosis, providing basis for inflammatory signalling. This 408 

was unexpected because cGAS and STING reside outside the mitochondria, whereas mtDNA 409 

localises to the mitochondrial matrix and the inner mitochondrial membrane was thought to 410 

remain intact during apoptosis. Various studies employing different imaging approaches in 411 

murine embryonic fibroblasts as well as various cancer cell lines have addressed how 412 

mtDNA could be exposed to cGAS–STING
104-106

. Super-resolution imaging of cells undergoing 413 

mitochondrial apoptosis demonstrated that MOMP induction is followed, over time, by the 414 

formation of expanding pores on the mitochondrial outer membrane. These large pores, 415 

called macropores, were decorated with activated BAX at their edges
104,105

, suggesting that 416 

BAX-mediated membrane permeabilization progresses over time causing widening of these 417 

outer mitochondrial membrane pores. Similar BAX/BAK-dependent progressive membrane 418 

permeabilization has been previously reported in liposomes 
46

. These macropores allowed 419 

extrusion of the inner mitochondrial membrane, which in some cases was associated with 420 

permeabilization of the membrane at such extrusions; this would allow mtDNA release and 421 

cGAS–STING activation (Figure 2). Whether inner mitochondrial membrane 422 

permeabilization is regulated remains unclear. Although the underlying mechanism remains 423 

unknown, we know that it is independent of DRP-1-mediated mitochondrial fission 
104,105

. 424 

Furthermore, compared with healthy mitochondria, the matrix of apoptotic mitochondria is 425 

more dilute 
106

. Potentially, the extra pressure associated with the increased volume of a 426 
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more dilute matrix may be an important driver of both macropore expansion and inner 427 

mitochondrial membrane extrusion and subsequent rupture.  428 

 429 

By allowing mtDNA release, inner mitochondrial membrane permeabilization may be 430 

an important initiator of inflammation in different areas of health and disease. One example 431 

is Parkinson disease, which is associated with defective mitochondrial clearance — through 432 

a selective autophagy process called mitophagy — that in the case of early-onset Parkinson 433 

disease is caused by the loss of mitophagy regulators: the E3 ubiquitin ligase Parkin or its 434 

upstream mitochondrial kinase, PINK1. Loss of PINK1 or Parkin has been found to activate 435 

cGAS–STING signalling, most likely by mtDNA released from defective mitochondria that are 436 

not cleared by mitophagy, leading to an inflammatory phenotype 
107

. Underscoring the 437 

functional importance of this inflammatory response, deletion of STING prevents 438 

inflammation in Parkin-deficient mice, inhibiting the death of dopaminergic neurons and 439 

Parkinson-like behavioural defects 
107

 . Beyond driving Parkinson disease, cytosolic mtDNA 440 

has various other documented roles in inflammation and immunity, although how mtDNA is 441 

released to the cytoplasm in those different contexts remains unclear 
108-110

. In many of 442 

these instances, mtDNA dependent activation of inflammation occurs without cell death; it 443 

is possible that damaged mitochondria promote the activation of BAX/BAK, leading to inner 444 

mitochondrial membrane permeabilization downstream of MOMP as discussed above. 445 

Should BAX or BAK be required for mtDNA release in these circumstances, it must occur 446 

under conditions of minority MOMP. Relating this to our earlier discussion, the ability of 447 

minority MOMP to mediate pathogen clearance is, in part, due to mtDNA dependent 448 

activation of cGAS–STING 
95

. 449 

 450 

Besides mtDNA dependent activation of cGAS–STING, MOMP engages additional 451 

pro-inflammatory signalling pathways (Figure 4). Under caspase deficiency, MOMP caused 452 

downregulation of inhibitors of apoptosis proteins (IAPs), such as cIAP1 and cIAP2. This, in 453 

turn, upregulated the kinase NIK leading to NF-κB activation
111. This mechanism is 454 

analogous to that previously observed with SMAC-mimetic compounds [G] 112,113

. Like SMAC 455 

mimetics, MOMP can trigger NF-κB-dependent production of tumour necrosis factor (TNF) 456 

that, co-incidentally, can trigger an alternative form of cell death called necroptosis 457 
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(discussed later) following MOMP 
111

. Nevertheless, how MOMP triggers IAP depletion is 458 

unclear. While it requires the ability of cIAP1 to bind to SMAC-like proteins, combined 459 

genetic deletion of SMAC and OMI (another IAP binding protein) does not prevent cIAP 460 

degradation following MOMP. IAP degradation independent of SMAC and OMI may be due 461 

to redundancy with other mitochondrial IAP binding proteins 
114,115

. Interestingly, MOMP in 462 

macrophages also causes IAP depletion but engages a different pro-inflammatory signalling 463 

pathway 
116,117

. In macrophages, MOMP-dependent depletion of IAPs activated caspase 8 464 

(ref. 
118,119

). Caspase 8 activity promoted the maturation of the pro-inflammatory cytokine 465 

IL-1β 
116,117

. By demonstrating caspase 8 activation downstream of MOMP, these studies 466 

also reveal a novel means of crosstalk between the intrinsic and extrinsic apoptotic 467 

signalling pathways. In parallel, the NLRP3 inflammasome [G] is also activated downstream 468 

of MOMP causing caspase 1-dependent IL-1β maturation 
116,117

. In this context, the NLRP3 469 

inflammasome is activated by apoptotic caspase-dependent potassium efflux
120

.  470 

 471 

A final aspect of MOMP-induced inflammation relates to its recently described role 472 

in the release of mitochondrial double stranded RNA (dsRNA) – a potent trigger of an anti-473 

viral interferon response 
120

. Because of its circular structure, bi-directional transcription of 474 

the mtDNA genome generates long dsRNAs. Normally, these dsRNAs are degraded by a 475 

protein complex called the RNA degradosome [G] . Inhibition of RNA degradosome 476 

components causes accumulation of cytosolic dsRNAs that bind an adaptor molecule MDA5. 477 

MDA5 then activates the mitochondria bound protein MAVS, which subsequently 478 

oligomerizes and activates NF-κB and IRF3 to induce an interferon response. Supporting the 479 

relevance of this pathway in vivo, patients bearing a hypomorphic mutation in 480 

polyribonucleotide nucleotidyl transferase 1 (PNPT1), an exoribonuclease involved in 481 

mitochondrial dsRNA breakdown and an RNA degradosome component, display increased 482 

markers of immune activation. Mitochondrial release of dsRNA requires either BAX or BAK, 483 

possibly engaging the same macropore-based mechanism described for mtDNA 
120

.  484 

 485 

[H2] Counteracting MOMP-induced inflammation.  486 

 Although MOMP can engage a plethora of inflammatory signalling pathways, in most 487 

cases mitochondrial apoptosis is non-inflammatory. How can this be reconciled? The likely 488 
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main reason is that MOMP simultaneously activates apoptotic caspases to effectively 489 

quench inflammation (Figure 5). Apoptotic caspase function inhibits inflammation at 490 

multiple-levels. Firstly, inflammatory signalling components including MAVS, cGAS and IRF3 491 

are directly cleaved (and inactivated) by apoptotic caspases 
121

. Secondly, apoptotic caspase 492 

function inhibits many processes, including protein translation and canonical protein 493 

secretory pathways to prevent the production and release of inflammatory cytokines and 494 

thereby suppressing inflammation 
6

. Finally, caspase activity causes rapid cell death that is 495 

coupled with caspase-dependent generation of "find-me" and "eat-me" signals [G] 122
. 496 

These signals recruit phagocytic cells to engulf and remove dying apoptotic cells before they 497 

can release any pro-inflammatory molecules. Nevertheless, caspase activity may not 498 

absolutely essential to curb MOMP-driven inflammation. For instance, on some genetic 499 

backgrounds Caspase-3-/- 
or Apaf-1-/- 

mice can survive to adulthood without an obvious 500 

hyper-inflammatory phenotype 
123,124

. A potential explanation for lack of inflammation is 501 

that MOMP also engages additional caspase-independent anti-inflammatory mechanisms. 502 

One means is through MOMP-dependent release of PNPT1 from the mitochondrial 503 

intermembrane space, which causes global mRNA degradation and likely includes 504 

degradation of inflammatory transcripts 
125

. Finally, MOMP engages autophagy, which 505 

supports autophagic sequestration of defective, permeabilized mitochondria. Autophagy 506 

also inhibits the secretion of specific pro-inflammatory cytokines such as IFN-β (Figure 5)
126

. 507 

 508 

 Because MOMP normally engages anti-inflammatory caspase activity, when would 509 

the inflammatory consequences of MOMP manifest? Tracking back to our discussion of 510 

minority MOMP and pathogen immunity, minority MOMP has been shown to trigger 511 

inflammation under caspase-proficient conditions; in this setting, MOMP-induced 512 

inflammation overrides anti-inflammatory signals associated with caspase activity 
95

. This 513 

implies that MOMP has a wide potential to drive inflammation, in particular in cell types 514 

exhibiting limited potential to engage caspase activity, such as cardiomyocytes (which show 515 

reduced APAF-1 expression) or sympathetic neurons (which are characterized by increased 516 

expression of the caspase inhibitor XIAP) 
127,128

. Mitochondrial apoptosis in these cells may 517 

thus potentially have deleterious consequences. In line with this, recent studies have shown 518 

that inflammatory cGAS–STING signalling contributes to pathology observed during cardiac 519 

infarction 
129

. Whether MOMP drives this inflammatory phenotype is not known, but in 520 
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support of this idea, myocardial specific deletion of anti-apoptotic protein MCL-1 — leading 521 

to increased apoptotic potential — has previously been shown to cause heart failure 522 

associated with inflammation 
130

.  523 

 524 

In cancer therapy, intense interest surrounds making cancer cell death immunogenic 525 

in order to engage anti-tumour immunity 
131

. Cell death is typically immunogenic through 526 

two distinct, though not mutually exclusive, means: release of inflammatory molecules (e.g. 527 

ATP, DNA) collectively referred to as damage-associated molecular patterns (DAMPs) from 528 

dying cells or, active engagement of pro-inflammatory signalling in the dying cell 
132

. 529 

Unleashing pro-inflammatory effects of apoptosis can be achieved by caspase inhibition, 530 

resulting in caspase-independent cell death. As shown in cancer cells, this immunogenic 531 

type of apoptosis requires NF-κB activation in the dying cell 
111

. Direct comparison of 532 

therapeutically inducing caspase-independent cell death versus canonical apoptosis 533 

demonstrated that, by engaging anti-tumour immunity, caspase-independent cell death is 534 

much more effective than apoptosis in clearing cancer cells, often leading to tumour 535 

regression. This suggests that inhibiting apoptotic caspase function may be beneficial in 536 

cancer treatment 
111

. Supporting this idea, previous reports have shown that caspase 537 

inhibitors can have anti-tumour effects 
133,134

. By eliciting an IFN response, targeting 538 

mitochondrial apoptotic caspase activity may also have anti-viral activity. Indeed, genetic 539 

inhibition of caspase function enhances anti-viral immunity that requires IFN signalling 540 
101,121

. Moreover, emricasan, a clinically applicable pan-caspase inhibitor, was recently found 541 

to inhibit Zika virus infection, potentially by eliciting an IFN-response 
135

. 542 

 543 

[H1] Mitochondria beyond apoptosis  544 

 Mitochondria are central initiators of the intrinsic pathway of apoptosis, but they 545 

may also contribute to other forms of programmed cell death (Figure 6). However, in these 546 

cases their participation is less defined and not necessarily essential.  547 

 548 

[H2] Mitochondria can support necroptotic signalling.  549 

 Necroptosis is a regulated caspase-independent form of cell death that shares 550 

morphological and inflammatory characteristics with an unregulated, passive form of cell 551 
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death called necrosis
136

. Aberrant levels of necroptosis have been implicated in various 552 

inflammatory diseases and ischaemic injury [G] , making this cell death modality an 553 

important therapeutic target. Different stimuli, including viral infection and Toll receptor [G] 554 

signalling, can induce necroptosis, but it is best characterised in the context of TNF 555 

signalling. In a simplified model, under caspase 8 deficiency, TNF receptor engagement leads 556 

to activation of receptor interacting protein kinase-1 (RIPK1) and RIPK3 causing the 557 

formation of the necrosome [G]. RIPK3 phosphorylates mixed-lineage kinase domain-like 558 

pseudokinase (MLKL) leading to its activation 
136

. Active, oligomerized MLKL permeabilizes 559 

the plasma membrane, killing the cell.  560 

 Do mitochondria have a role in necroptosis? Using a method of enforced mitophagy 561 

to deplete mitochondria, forced activation of RIPK3 by chemically-induced dimerization has 562 

shown that necroptosis executes with the same kinetics, irrespective of mitochondria, 563 

consistent with activation of MLKL being the executioner mechanism of necroptosis 
137

 564 

(Figure 6). Nevertheless, at least in some cell types, mitochondrial ROS facilitate the 565 

initiation of necroptosis by promoting RIPK1 autophosphorylation, leading to its activation 566 

and necrosome formation 
138,139

. In a feed-forward manner, RIPK3 kinase activates the 567 

pyruvate dehydrogenase complex, leading to enhanced aerobic respiration and associated 568 

increased ROS generation 
140

 (Figure 6). Because levels of ROS may be an important 569 

determinant as to whether a cell initiates necroptosis, progressive mitochondrial 570 

dysfunction, for example observed during ageing, may increase the propensity of cells to 571 

undergo necroptosis.  572 

 573 

[H2] Interplay between mitochondrial apoptosis and pyroptosis. 574 

 Pyroptosis is an inflammatory-type of regulated cell death driven by the 575 

inflammatory caspases 1, 4, 5, and 11 
141

. Primarily serving as an innate immune response to 576 

intracellular pathogens, pyroptosis is executed by caspase-dependent cleavage of GSDMD 577 
142,143

. Initiation of pyroptosis requires inflammatory caspase activation, which occurs on 578 

various signalling platforms that are collectively referred to as inflammasomes. During 579 

pyroptosis, the amino-terminal GSDMD cleavage fragment permeabilizes the plasma 580 

membrane leading to the release of pro-inflammatory cytokines including IL-1β and IL-18.  581 

  582 
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 Mitochondria lose function prior to GSDMD-dependent plasma membrane rupture, 583 

however there is little evidence that they play an important role in pyroptosis 
144

. 584 

Nevertheless, extensive crosstalk exists between pyroptosis and mitochondrial apoptosis 585 

(Figure 6). Firstly, as discussed previously, the inflammasome generated GSDMD amino-586 

terminal cleavage fragment can induce MOMP causing caspase3 activation 
56

. Secondly, in 587 

cells expressing low amounts of GSDMD, rather than pyroptosis, caspase 1 activation leads 588 

to mitochondrial apoptosis 
145

, which is, at least in part, due to caspase 1-dependent 589 

cleavage and activation of the BH3-only protein BID. Finally, mitochondrial apoptosis has 590 

also been shown to initiate activation of the NLRP3-inflammasome leading to caspase 1 591 

activity 
146

. This requires caspase 3-dependent cleavage of a potassium channel forming 592 

glycoprotein, pannexin-1, which activates the channel and causes potassium efflux from the 593 

cell that promotes inflammasome assembly (Figure 6). Although the physiological 594 

significance of crosstalk between different cell death modalities is currently unclear, it 595 

emphasises that individual types of cell death cannot be viewed in isolation.  596 

  597 

[H2] Mitochondria, ROS and membrane peroxidation in ferroptosis. 598 

 Ferroptosis is another pro-inflammatory cell death modality, which is triggered by 599 

lipid peroxides that kill the cell by attacking lipid membranes leading to loss of cell integrity 600 
147,148

. As the name suggests, iron plays a crucial role in this process, as it is required for the 601 

Fenton reaction [G] responsible for lipid peroxidation. Under normal circumstances, 602 

peroxidised lipids are converted to lipid alcohols by glutathione peroxidase 4 (GPX4), which 603 

inactivates these harmful peroxides. GPX4 requires glutathione [G] as cofactor to convert 604 

peroxidised lipids to lipid alcohols and glutathione, in turn, requires cysteine. Transport of 605 

cysteine (via cystine, an oxidized cysteine dimer) into the cells is driven by the export of 606 

glutamate via System Xc

-

, a mechanism that can be inhibited by a small molecule inhibitor 607 

called erastin. Blocking System Xc

-
 with erastin therefore leads to decreased levels of 608 

glutathione, and subsequently impaired neutralization of lipid peroxides by GPX4 (ref. 
149

).  609 

 610 

 A role for mitochondria in regulating ferroptosis is contentious. For instance, 611 

ferroptosis sensitivity has been found to be unaffected by loss of mtDNA or indeed removal 612 

of mitochondria 
148,150

. Nevertheless, in some instances mitochondria can contribute to 613 

ferroptosis, which is mainly related to the generation of ROS (Figure 6). For example, 614 
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mitochondrial (as well as cytosolic) ferritin [G] chelates iron and therefore prevents 615 

accumulation of free iron and iron-dependent lipid peroxidation by Fenton reaction [G] 151
. 616 

Along similar lines, the increase in free iron — as result of haeme [G] degradation — was 617 

shown to drive ferroptosis in vivo in mice, in apoptosis and/or necroptosis deficient 618 

cardiomyocytes exposed to DNA-damaging agent doxorubicin or ischaemia/reperfusion 
152

. 619 

In this case, the excess free iron accumulated in mitochondria and caused lipid peroxidation 620 

of their membranes (Figure 6). Another way of lipid peroxide accumulation in the 621 

mitochondria is during cysteine deprivation, which promotes glutaminolysis, and therefore 622 

potently enhances mitochondrial respiration (by stimulating the activity of the tricarboxylic 623 

acid cycle). This leads to mitochondrial hyperpolarisation and increased production of ROS, 624 

which was shown to promote lipid peroxidation and the induction of ferroptosis
153

.  625 

 626 

[H1] Conclusions and perspectives 627 

 In this Review we have discussed the central role of mitochondria in the apoptotic 628 

cell death. Beyond discussing the well-established roles in the execution of cell dismantling 629 

via apoptotic signalling, we aimed to highlight the surprising new role of mitochondria as 630 

pro-inflammatory signalling hubs during apoptosis. Together with recent findings that cells 631 

can tolerate limited MOMP, this emerging role suggests that apoptotic signalling may have 632 

non-lethal functions.  633 

  634 

 Going forward, a key area of research will be to define the occurrence and roles of 635 

MOMP-induced inflammation in health and disease. This will require further understanding 636 

of how MOMP engages both pro- and anti-inflammatory effects and how they interplay 637 

with each other. It will be interesting to address why these two opposing effects of MOMP 638 

coexist. One possibility is that the pro-inflammatory effects of MOMP evolved specifically to 639 

support innate immune responses to pathogen invasion. For instance, viruses can encode 640 

caspase inhibitors, and in this scenario induction of mitochondrial apoptosis by viruses could 641 

serve to elicit an anti-viral interferon response.  642 

  643 

 The finding that MOMP can occur in the absence of cells death opens further 644 

research questions. As we have discussed, there is support for non-lethal apoptotic 645 

signalling, nevertheless this evidence comes from in vitro experiments and the significance 646 
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of non-lethal apoptotic signalling in vivo is currently lacking. Key to investigating this 647 

problem will be designing a way to mark mammalian cells in vivo that have undergone 648 

minority MOMP resulting in sub-lethal caspase activity using genetically tractable reporter 649 

systems, similar to analogous approaches in Drosophila melanogaster 154

. On a mechanistic 650 

level , a crucial question will be to understand why some mitochondria selectively undergo 651 

MOMP since the mechanisms underlying this heterogeneity in MOMP are completely 652 

unknown at present.  653 

 654 

 Therapeutic targeting of mitochondrial apoptosis has a great clinical potential in 655 

various diseases, best evidenced by the development of BH3-mimetics in oncology. We now 656 

have effective ways to sensitize cells to mitochondrial apoptosis (Figure 7). Promoting 657 

mitochondrial apoptosis, using BH3-mimetics and possibly other approaches (for example, 658 

small molecule BAX activators) may have utility in different settings including, but not 659 

limited to, cancer 
3
, fibrosis 

155
 and ageing 

156
. Although our ability to therapeutically inhibit 660 

mitochondrial apoptosis trails behind the approaches to induce apoptosis, progress is being 661 

made with inhibitors of BAX/BAK-dependent apoptotic activity recently being described 662 
157,158

 that can promote neuroprotection in the context of neurodegenerative disease 663 

(Figure 7). Recent discoveries that the outcome of apoptotic cell death (inflammatory versus 664 

non-inflammatory) can be modulated following MOMP, for example, by caspase inhibition, 665 

also opens new ways to think about therapeutically targeting the mitochondrial apoptotic 666 

pathway to promote immune responses against malignant, infected or otherwise 667 

dysfunctional cells (Figure 7).  668 

 669 

 Finally, as we have discussed, mitochondria have also been implicated in other forms 670 

of regulated cell death including necroptosis, pyroptosis and ferroptosis, although their role 671 

in these types of cell death appears less crucial, or at least context dependent. Nevertheless, 672 

it is increasingly apparent that these different cell death modalities crosstalk with one 673 

another and this crosstalk involves mitochondria. Given that some forms of cell death can 674 

be more inflammatory than others, how death is initiated, propagated and finally executed 675 

can have important consequences in cellular homeostasis as well as in the various disease 676 

settings involving deregulation of cell death.  677 

 678 
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Display items  1162 

Box 1. BCL-2 protein-mediated regulation of mitochondrial apoptosis 1163 

BCL-2 protein-mediated regulation of cell death has recently been reviewed in-depth 1164 

elsewhere
159

, therefore here we present only an overview. The BCL-2 protein family 1165 

comprises three subsets: the anti-apoptotic proteins, pro-apoptotic effectors and pro-1166 

apoptotic BH3-only proteins (see the figure). Following an apoptotic stress, BH3-only 1167 

proteins are activated in different ways, for instance by transcriptional up-regulation (e.g. 1168 

p53-mediated up-regulation of PUMA) or by post-translational modification (e.g. caspase 8-1169 

mediated cleavage of BID). They subsequently activate BAX and BAK, cause mitochondrial 1170 

outer membrane permeabilization (MOMP) and apoptosis.  1171 
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 1172 

In healthy cells, anti-apoptotic BCL-2 proteins prevent MOMP by binding activated BAX and 1173 

BAK effectors and BH3-only proteins 
160

. This binding occurs via a hydrophobic groove, 1174 

which interacts with the BH3-domain of pro-apoptotic BCL-2 proteins. Competitive 1175 

disruption of this interaction forms the basis of pro-apoptotic activity of BH3-mimetics. Of 1176 

note, efficiency of BH3-mimetics can be compromised by additional regulation of anti-1177 

apoptotic proteins, leading to drug resistance. For example, mitochondrial association of 1178 

BCL-xL can increase its affinity for BH3-only proteins 
161

, whereas BIM has been found to 1179 

encode an additional carboxy-terminal site that binds to anti-apoptotic BCL-2 proteins in a 1180 

manner that is resistant to displacement by BH3 mimetics
162

.  1181 

 1182 

How exactly BAX and BAK become activated has been contentious. Two prominent models 1183 

have been proposed: 1) the indirect activation model, where inhibition of anti-apoptotic 1184 

BCL-2 proteins activates BAX and BAK and 2) direct model of activation where a subset of 1185 

BH3-only proteins called direct activators (BID, BIM, PUMA) directly activate BAX and BAK. 1186 

Distinguishing between these two models has proven challenging, in large part because 1187 

direct activator BH3-only proteins also inhibit all anti-apoptotic BCL-2 proteins. Intriguingly, 1188 

a recent study has found that in the absence of all known BH3-only proteins, inhibition of 1189 

anti-apoptotic BCL-2 function using BH3-mimetics is sufficient to activate BAX and BAK 1190 

leading to apoptosis 
163

. This demonstrates that BH3-only proteins are dispensable for the 1191 

direct activation of BAX and BAK, but it remains an open question as to how BAX and BAK 1192 

can acquire active conformations in the absence of BH3-only proteins. BH, Bcl-2 homology 1193 

domain; TMD, transmembrane domain.  1194 

 1195 

Figure 1. Apoptotic signalling pathways Apoptosis can occur via two pathways: extrinsic 1196 

and intrinsic. Extrinsic (also known as death receptor) apoptotic pathway involves the 1197 

binding of a death receptor ligand to a member of the death receptor family (members of 1198 

the tumor necrosis receptor superfamily). For example, Fas-ligand binding to Fas initiates 1199 

apoptosis by recruiting the adaptor molecule FADD. FADD binds to and induces dimerization 1200 

of the initiator caspase 8 leading to its activation. Active caspase 8 cleaves and activates the 1201 

executioner caspases 3 and 7, leading to wide-scale cleavage of cellular components and 1202 

rapid cell death. In the intrinsic (also known as mitochondrial) apoptotic pathway is induced 1203 
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by a vast number of different stimuli (including DNA-damage, growth factor withdrawal, 1204 

mitotic arrest), which cause activation of a BH3-only members of the BCL-2 protein family. 1205 

BH3-only proteins inhibit anti-apoptotic BCL-2 proteins and activate effector pro-apoptotic 1206 

BCL-2 proteins BAX and BAK leading to mitochondrial outer membrane permeabilization 1207 

(MOMP). This allows the release of mitochondrial intermembrane space proteins that 1208 

activate caspases, most importantly, cytochrome c. Cytochrome c binds to APAF-1 forming a 1209 

heptameric structure called the apoptosome. This recruits and activates the initiator 1210 

caspase 9 that activates caspase 3 and 7. MOMP also causes the release of proteins 1211 

including SMAC and OMI that block the caspase inhibitor XIAP, facilitating apoptosis. 1212 

Caspase 8-mediated cleavage and activation of BH3-only protein BID (to generate tBID) 1213 

connects the extrinsic apoptotic pathway to the intrinsic pathway. 1214 

 1215 

Figure 2. BAX/BAK-mediated mitochondrial outer membrane permeabilization 1216 

In healthy conditions, BAX, and to a lesser degree BAK, shuttle between the mitochondria 1217 

and cytoplasm (step 1). During apoptosis, BAX and BAK can be directly activated by binding 1218 

BH3-only proteins; this leads to their stabilization at the outer mitochondrial membrane 1219 

(OMM) and their homodimerization (step 2). BAX/BAK dimers then further oligomerize 1220 

forming higher-order multimers that generate lipid pores within the outer mitochondrial 1221 

membrane causing mitochondrial outer membrane permeabilization (MOMP); this leads to 1222 

the non-selective release of soluble intermembrane space proteins, such as cytochrome c 1223 

from the intermembrane space; this release process has been suggested to be further 1224 

facilitated by inner mitochondrial membrane (IMM) remodelling that involves opening of 1225 

the mitochondrial cristae to allow robust release of cytochrome c (step 3). Over time, 1226 

BAX/BAK-mediated pores expand forming macropores; this enables IMM extrusion through 1227 

the OMM, whereupon it herniates and ruptures allowing the release of mitochondrial DNA 1228 

(mtDNA) (step 4). Although the exact mechanism of IMM herniation and rupture is not 1229 

known, dilution of the mitochondrial matrix and the associated increased pressure may play 1230 

a role.  1231 

 1232 

Figure 3. Differential levels of mitochondrial outer membrane permeabilization permit cell 1233 

survival and unmask signalling functions  1234 
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Apoptotic stresses can lead to incomplete mitochondrial outer membrane permeabilization 1235 

(MOMP), which is compatible with cell survival. a) Cells induced to undergo apoptosis can 1236 

survive under conditions of caspase inhibition. Cell survival in this context requires the 1237 

presence of a subpopulation of intact mitochondria that did not undergo MOMP. Cell 1238 

survival also depends on the expression of glyceraldehyde-3-phosphate dehydrogenase 1239 

(GAPDH), which supports high glycolytic activity and autophagy, thereby generating energy 1240 

to prevent metabolic catastrophe and removing dysfunctional mitochondria that could 1241 

instigate further damage. Through these mechanisms cells can survive long enough to allow 1242 

the intact mitochondria to proliferate enabling cell survival. b) Sub-lethal stresses, for 1243 

instance BH3-mimetic treatment, can cause only a subset of mitochondria to undergo 1244 

MOMP — a condition known as minority MOMP. Minority MOMP can engage a limited, sub-1245 

lethal caspase activity, which is associated with DNA damage dependent on caspase-1246 

activated DNAse (CAD) and caspase 3- dependent release of endonuclease G (Endo G) from 1247 

mitochondria. Such DNA damage can promote oncogenic transformation. Minority MOMP 1248 

can also drive pro-inflammatory signalling in the absence of cell death, for instance by 1249 

inducing CAD-dependent DNA damage, or by causing mtDNA release, both of which can 1250 

drive pro-inflammatory signalling via cyclic GMP-AMP synthase (cGAS)–stimulator of 1251 

interferon genes (STING) (see also Fig. 4). 1252 

 1253 

Figure 4. Pro-inflammatory effects of mitochondrial outer membrane permeabilization 1254 

Mitochondrial outer membrane permeabilization (MOMP) can induce inflammation in 1255 

multiple ways. 1: Following MOMP, the outer membrane pores progressively widen 1256 

enabling inner mitochondrial membrane extrusion and rupture. This allows mtDNA release 1257 

into the cytosol whereupon it can engage cyclic GMP-AMP synthase (cGAS)–stimulator of 1258 

interferon genes (STING) signalling, leading to pro-inflammatory interferon signalling. 2: 1259 

MOMP causes the proteasomal degradation of IAP proteins (inhibitors of apoptosis), which 1260 

leads to upregulation of NIK kinase causing pro-inflammatory NF-κB signalling and activation 1261 

of caspase 8, in turn causing maturation of pro-inflammatory IL-1β. 3: Under conditions of 1262 

defective degradation of mitochondrial double-stranded RNA (dsRNA), like knockdown of 1263 

RNA degradosome components, dsRNA is released via an ill-defined mechanism from the 1264 

mitochondria in a BAX/BAK-dependent manner. In the cytosol, dsRNA can bind adaptor 1265 
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protein MDA5 that then binds MAVS, which subsequently oligomerizes and activates NF-κB 1266 

and IRF3 to induce an interferon response. 1267 

  1268 

Figure 5. Inhibition of mitochondrial outer membrane permeabilization-induced 1269 

inflammation 1270 

Inflammatory signalling downstream of mitochondrial outer membrane permeabilization 1271 

(MOMP) is regulated in multiple ways. Firstly, caspases inhibit multiple processes required 1272 

for pro-inflammatory cytokine synthesis and secretion. This includes general 1273 

downregulation of protein translation and canonical protein secretion to prevent the 1274 

production and release of inflammatory cytokines. Caspases also directly cleave and 1275 

inactivate various pro-inflammatory signalling molecules including cyclic GMP-AMP synthase 1276 

(cGAS), MAVS and IRF3. Caspase activity also promotes the quick death and phagocytic 1277 

removal of dying cells by invoking “find me” and “eat me” signals, limiting the time in which 1278 

the dying cells can produce pro-inflammatory signalling molecules. Beyond the role of 1279 

caspases, MOMP is associated with the release of RNA degradasome component 1280 

polyribonucleotide nucleotidyl transferase 1 (PNPT1), which can cause global mRNA 1281 

degradation, likely causing downregulation of inflammatory gene transcripts. MOMP also 1282 

activates autophagy that sequesters permeabilized mitochondria and inhibits the release of 1283 

pro-inflammatory IFN-β. 1284 

 1285 

Figure 6. Mitochondria and non-apoptotic cell death 1286 

a) Necroptosis is a pro-inflammatory mode of cell death associated with the release of 1287 

damage associated molecular patterns (DAMPs). Various treatments can trigger 1288 

necroptosis, which is best characterised following tumor necrosis factor (TNF) treatment. 1289 

Under caspase inhibition, TNF treatment leads to sequential phosphorylation (P) and 1290 

activation of the kinases RIPK1 and RIPK3 and necrosome formation. The necrosome then 1291 

phosphorylates and activates the pseudokinase MLKL, which translocates to and 1292 

permeabilizes the plasma membrane, killing the cell. RIPK3 also activates the mitochondrial 1293 

pyruvate dehydrogenase (PDH) complex, causing enhanced aerobic respiration and 1294 

increased generation of reactive oxygen species (ROS). These mitochondria-derived ROS can 1295 

feed-forward to enhance necrosome assembly and RIPK3 activity. b) Activation of 1296 
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inflammasome complexes, for instance by intracellular pathogens, causes inflammatory 1297 

caspase activation, which cleave pro-inflammatory cytokines IL-1β and IL-18, leading to their 1298 

maturation. Inflammatory caspases also cleave and activate gasdermin D (GSDMD). Active 1299 

GSDMD forms pores and permeabilizes the plasma membrane leading to pyroptotic cell 1300 

death. Active GSDMD can also cause mitochondrial outer membrane permeabilization 1301 

(MOMP). Additionally, inflammasome activity promotes MOMP through the cleavage and 1302 

activation of the BH3-only protein BID. Downstream of MOMP, activation of caspase 3 leads 1303 

to cleavage-dependent activation of the potassium channel forming glycoprotein pannexin-1304 

1. This causes potassium efflux from the cell, which promotes inflammasome assembly. c) 1305 

Ferroptosis is triggered by oxidized lipids in reactions catalyzed with the help of iron and 1306 

ROS (Fenton reaction). Defence against this reaction is provided by glutathione peroxidase 4 1307 

(GPX4), which inactivates harmful lipid peroxides One means of ferroptosis induction is via 1308 

treatment with erastin, which blocks import of cysteine and interferes with GPX4 activity or 1309 

via cysteine deprivation. Beyond affecting GPX4, cysteine deprivation also causes increased 1310 

glutaminolysis, which feeds the mitochondrial tricarboxylic acid (TCA) cycle, thereby 1311 

increasing mitochondrial respiration and in consequence augmenting levels of 1312 

mitochondrial ROS. Iron is stored in various iron-binding proteins including ferritin and 1313 

haeme-containing proteins, and mitochondria contribute to this storage. These iron-storing 1314 

proteins are degraded under certain cell death-inducing conditions leading to iron release. 1315 

Proximity of mitochondrial membranes to such sources of free iron and ROS makes them an 1316 

important target for lipid oxidation associated with ferroptosis. ETC, electron transport 1317 

chain. 1318 

 1319 

Figure 7. Strategies to target mitochondrial apoptosis in disease 1320 

1: Apoptosis can be activated either through inhibition of anti-apoptotic BCL-2 proteins 1321 

(with BH3-mimetics) or by directly activating BAX/BAK (for example, with small molecules). 1322 

Such approaches have a proven use in oncology and have a clinical potential in the 1323 

treatment of autoimmunity, fibrosis and ageing. 2: Efficient inhibition of mitochondrial 1324 

apoptosis can be achieved via blocking BAX and BAK (for example, with small molecules), 1325 

which has a potential use in counteracting pathological cell loss, for instance in the context 1326 

of neurodegenerative diseases or infection. 3: Inhibition of caspase function following 1327 

mitochondrial outer membrane permeabilization (MOMP; see also Fig. 3) has the potential 1328 
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to turn apoptosis into an immunogenic type of cell death, which could be used to boost 1329 

immune responses in anti-tumour and anti-viral therapies. 4: Better understanding of the 1330 

heterogeneity of MOMP and mechanisms of mitochondrial network recovery in the absence 1331 

of cell death following MOMP could be used to promote cell survival in the context of cell 1332 

loss in response to various insults, such as stroke or infarction.  1333 

 1334 

Glossary 1335 

BH3-mimetics 1336 
Drugs modelled after the proapoptotic BH3 domain of BH3 only proteins that are used in 1337 
cancer therapy 1338 
 1339 
Death inducing signalling complex (DISC) 1340 
Complex consisting of death receptor, FADD and caspase 8 that can mediate apoptosis 1341 
 1342 
SMAC (also called DIABLO) 1343 
Mitochondrial intermembrane space protein that upon MOMP binds to and inhibits XIAP  1344 
 1345 
OMI (also called HtrA2) 1346 
Serine protease located within mitochondrial intermembrane space that binds to and 1347 
inhibits XIAP following MOMP 1348 
 1349 
XIAP 1350 
Protein that binds to and inhibits caspases 3, -7 and -9 1351 
ER associated degradation (ERAD) 1352 
Pathway that serves to degrade misfolded ER proteins by the proteasome, mitigating ER 1353 
stress  1354 
 1355 
Neoantigens  1356 
Newly generated antigens that, in cancer, usually arise from mutated genes 1357 
 1358 
Type I interferon 1359 
Class of cytokines mediating inflammation 1360 
 1361 
SMAC-mimetic compounds  1362 
Chemicals that were designed to phenocopy the IAP-binding and inhibitory properties of 1363 
SMAC 1364 
 1365 
NLRP3 inflammasome 1366 
Protein complex containing NLRP3 and caspase 1 that processes and activates inflammatory 1367 
cytokines like IL-1� and IL-18 1368 
 1369 
RNA degradasome  1370 
Multi-protein complex present in bacteria and mitochondria that degrades RNA 1371 
 1372 
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"find-me" and "eat-me" signals 1373 
Molecular signals used by dying cells to attract phagocytes; examples of find-me signals 1374 
include ATP and lysophosphatidylcholine (LPC); the best characterised eat-me signal is 1375 
phosphatidylserine (PS).  1376 
 1377 
Ischaemic injury 1378 
Hypoxia-mediated injury due to diminished blood flow 1379 
 1380 
Toll receptor  1381 
A class of protein receptors that serve a key role in innate immunity by sensing conserved 1382 
molecules derived from microbes 1383 
 1384 
Necrosome 1385 
Protein complex containing RIP1 and RIP3 kinases that promotes necroptotic cell death 1386 
 1387 
Fenton reaction 1388 
Reaction of peroxides with iron to yield free radicals 1389 
 1390 
Glutathione 1391 
Key cellular antioxidant that scavenges reactive oxygen species through reduction 1392 
 1393 
Ferritin 1394 
Iron-binding protein that plays important roles in the storage and transport of iron 1395 
throughout the body 1396 
 1397 
Haeme  1398 
Iron-containing co-ordination complex present in haemoproteins such as haemoglobin, 1399 
catalases and cytochrome c 1400 
 1401 
eTOC 1402 
Mitochondria are key executioners of apoptosis. However, it has recently become clear that 1403 
beyond driving apoptosis, mitochondria also contribute to pro-inflammatory signalling and 1404 
other types of regulated cell death. These functions are relevant to disease and could be 1405 
targeted in the treatment of, for example, degenerative disorders, infection and cancer. 1406 


