428 research outputs found

    Targeting BCL-2 regulated apoptosis in cancer

    Get PDF
    The ability of a cell to undergo mitochondrial apoptosis is governed by pro- and anti-apoptotic members of the BCL-2 protein family. The equilibrium of pro- versus anti-apoptotic BCL-2 proteins ensures appropriate regulation of programmed cell death during development and maintains organismal health. When unbalanced, the BCL-2 family can act as a barrier to apoptosis and facilitate tumour development and resistance to cancer therapy. Here we discuss the BCL-2 family, their deregulation in cancer and recent pharmaceutical developments to target specific members of this family as cancer therapy

    Analysis of pathogenic bacteria using exogenous volatile organic compound metabolites and optical sensor detection

    Get PDF
    A novel, low-cost and simple method for the detection of pathogenic bacteria is proposed. The approach is based on the generation of an exogenous volatile organic compound (VOC) produced by the addition of an enzyme substrate to the bacterial sample. The generated VOC is then trapped in agarose gel allowing colour development to take place; visual detection is then possible by both the naked eye and by colorimetric analysis. Agarose gel has been evaluated as both a suitable VOC trapping matrix and host for the colour-generating reagents. This proof of concept method allowed for the discrimination between Ī²-glucosidase and Ī²-alanyl aminopeptidase producing bacteria. Enterococcus faecium and Klebsiella pneumoniae are both Ī²-glucosidase producers and generated a yellow colour within agarose gels upon enzymatic hydrolysis of 2-nitrophenyl-Ī²-D-glucoside. Pseudomonas aeruginosa is a known Ī²-alanyl aminopeptidase producer and was shown to hydrolyse the trifluoroacetic acid (TFA) salt of 3-amino-N-phenylpropanamide resulting in the development of an orange colour within agarose gels spiked with the sodium salt of 1,2-naphthoquinone-4-sulfonic acid. 3-Amino-N-phenylpropanamide (as its TFA salt) and 2-nitrophenyl-Ī²-D-glucoside concentrations of 20 Ī¼g mLāˆ’1 (or 72 Ī¼mol Lāˆ’1) and 100 Ī¼g mLāˆ’1 (or 332 Ī¼mol Lāˆ’1), respectively were the minimum quantities required for colour production following 18 h of incubation. The use of 3-amino-N-phenylpropanamide, TFA salt indicated that synthesised enzyme substrates can be tailor-made to liberate exogenous VOCs for colour generation

    Depletion of mitochondria in mammalian cells through enforced mitophagy

    Get PDF
    Mitochondria are not only the 'powerhouse' of the cell; they are also involved in a multitude of processes that include calcium storage, the cell cycle and cell death. Traditional means of investigating mitochondrial importance in a given cellular process have centered upon depletion of mtDNA through chemical or genetic means. Although these methods severely disrupt the mitochondrial electron transport chain, mtDNA-depleted cells still maintain mitochondria and many mitochondrial functions. Here we describe a straightforward protocol to generate mammalian cell populations with low to nondetectable levels of mitochondria. Ectopic expression of the ubiquitin E3 ligase Parkin, combined with short-term mitochondrial uncoupler treatment, stimulates widespread mitophagy and effectively eliminates mitochondria. In this protocol, we explain how to generate Parkin-expressing, mitochondria-depleted cells from scratch in 23 d, as well as offer a variety of methods for confirming mitochondrial clearance. Furthermore, we describe culture conditions to maintain mitochondrial-depleted cells for up to 30 d with minimal loss of viability, for longitudinal studies. This method should prove useful for investigating the importance of mitochondria in a variety of biological processes

    Mitochondrial apoptosis: killing cancer using the enemy within

    Get PDF
    Apoptotic cell death inhibits oncogenesis at multiple stages, ranging from transformation to metastasis. Consequently, in order for cancer to develop and progress, apoptosis must be inhibited. Cell death also plays major roles in cancer treatment, serving as the main effector function of many anti-cancer therapies. In this review, we discuss the role of apoptosis in the development and treatment of cancer. Specifically, we focus upon the mitochondrial pathway of apoptosisā€”the most commonly deregulated form of cell death in cancer. In this process, mitochondrial outer membrane permeabilisation or MOMP represents the defining event that irrevocably commits a cell to die. We provide an overview of how this pathway is regulated by BCL-2 family proteins and describe ways in which cancer cells can block it. Finally, we discuss exciting new approaches aimed at specifically inducing mitochondrial apoptosis in cancer cells, outlining their potential pitfalls, while highlighting their considerable therapeutic promise

    Mitochondria and inflammation: cell death heats up

    Get PDF
    Mitochondrial outer membrane permeabilization (MOMP) is essential to initiate mitochondrial apoptosis. Due to the disruption of mitochondrial outer membrane integrity, intermembrane space proteins, notably cytochrome c, are released into the cytosol whereupon they activate caspase proteases and apoptosis. Beyond its well-established apoptotic role, MOMP has recently been shown to display potent pro-inflammatory effects. These include mitochondrial DNA dependent activation of cGAS-STING signaling leading to a type I interferon response. Secondly, via an IAP-regulated mechanism, MOMP can engage pro-inflammatory NF-ĪŗB signaling. During cell death, apoptotic caspase activity inhibits mitochondrial dependent inflammation. Importantly, by engaging an immunogenic form of cell death, inhibiting caspase function can effectively inhibit tumorigenesis. Unexpectedly, these studies reveal mitochondria as inflammatory signaling hubs during cell death and demonstrate its potential for therapeutic exploitation

    Caspase-independent cell death: an anti-cancer double-whammy

    Get PDF
    No abstract available

    Mitochondrial DNA in inflammation and immunity

    Get PDF
    Mitochondria are cellular organelles that orchestrate a vast range of biological processes, from energy production and metabolism to cell death and inflammation. Despite this seemingly symbiotic relationship, mitochondria harbour within them a potent agonist of innate immunity: their own genome. Release of mitochondrial DNA into the cytoplasm and out into the extracellular milieu activates a plethora of different pattern recognition receptors and innate immune responses, including cGASā€STING, TLR9 and inflammasome formation leading to, among others, robust type I interferon responses. In this Review, we discuss how mtDNA can be released from the mitochondria, the various inflammatory pathways triggered by mtDNA release and its myriad biological consequences for health and disease

    Mitochondria as multifaceted regulators of cell death

    Get PDF
    Through their many and varied metabolic functions, mitochondria power life. Paradoxically, mitochondria also have a central role in apoptotic cell death. Upon induction of mitochondrial apoptosis, mitochondrial outer membrane permeabilization (MOMP) usually commits a cell to die. Apoptotic signalling downstream of MOMP involves cytochrome c release from mitochondria and subsequent caspase activation. As such, targeting MOMP in order to manipulate cell death holds tremendous therapeutic potential across different diseases, including neurodegenerative diseases, autoimmune disorders and cancer. In this Review, we discuss new insights into how mitochondria regulate apoptotic cell death. Surprisingly, recent data demonstrate that besides eliciting caspase activation, MOMP engages various pro-inflammatory signalling functions. As we highlight, together with new findings demonstrating cell survival following MOMP, this pro-inflammatory role suggests that mitochondria-derived signalling downstream of pro-apoptotic cues may also have non-lethal functions. Finally, we discuss the importance and roles of mitochondria in other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis. Collectively, these new findings offer exciting, unexplored opportunities to target mitochondrial regulation of cell death for clinical benefit

    Cancer therapy-induced PAFR ligand expression: any role for caspase activity?

    Get PDF
    No abstract available

    Installation of instrumentation for remote monitoring of biogas composition and operational data at commercial piggeries

    Get PDF
    New instrumentation was installed to closely monitor the operation of an existing hybrid covered anaerobic pond (hybrid CAP) at Piggery A, from April to June 2018. Over this period, the average biogas production from the hybrid CAP was 5,601 m3/d and the resulting biogas and methane yields were 523 m3 biogas and 287 m3 CH4, respectively, per tonne of volatile solids (VS) discharged into the hybrid CAP. The recorded methane yield indicated that the hybrid CAP was achieving a high methane recovery of 88% of the biochemical methane potential (BMP). Approximately two-thirds of the biogas produced by the hybrid CAP was used to run two 250 kWe combined heat and power (CHP) generator units, while the remaining third was burnt in a shrouded flare. The two CHP units generated an average of 6,490 kWh/d over the monitoring period (average output 270 kWe). Thirty-six percent (36%) of the electrical power generated by the CHP units was used in the pig sheds, predominantly running cooling fans, lights and heat lamps, 26% of the power was used to operate the on-site feed mill, and 26% was exported to the electricity grid. The remaining 12% (34 kWe) was used to run the hybrid CAP and onsite biogas production and use infrastructure. Piggery shed power consumption decreased and grid exports increased from April to June, reflecting the lower usage of the evaporative cooling fans as the weather became cooler. Based on the average power generation of 1.73 kWh/m3 biogas and the average biogas methane content of 55%, the average electrical efficiency of the generator engines was 34%, which is typical for reciprocating biogas engines. The average hydrogen sulphide (H2S) concentration in the biogas extracted from the hybrid CAP (223 ppm H2S) was much lower than levels typically observed in raw piggery biogas and only marginally higher than the recommended maximum of 200 ppm for many generator engines. However, this reduction in H2S concentration, which was achieved by biological oxidation inside the hybrid CAP headspace, was not sufficiently consistent for safe operation of the generator engines. Further biogas treatment in the external biological scrubber reduced the H2S concentrations to very low levels (average 18 ppm) which rarely exceeded 200 ppm. Occasional spikes in the H2S concentration generally coincided with generator stoppages which resulted in stoppages of the biological scrubber, biogas blower and air dosing pump. In general, the combined biological oxidation in the hybrid CAP and external biological scrubber was effective at removing H2S from the biogas
    • ā€¦
    corecore