121 research outputs found

    Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP

    Get PDF
    The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant-wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust simulation tools applicable to a broad range of wastewater engineering problems, this paper evaluates a plant-wide model built with sub-models from the Benchmark Simulation Model No. 2-P (BSM2-P) with an improved/expanded physico-chemical framework (PCF). The PCF includes a simple and validated equilibrium approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation. With default rate kinetic and stoichiometric parameters, a good general agreement is observed between the full-scale datasets and the simulated results under steady-state conditions. Simulation results show differences between measured and modelled phosphorus as little as 4-15% (relative) throughout the entire plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts on nutrient loading across the entire plant. A forecasted implementation of nutrient recovery by struvite crystallization (model scenario only), reduced the phosphorus content in the treatment plant influent (via centrate recycling) considerably and thus decreased phosphorus in the treated outflow by up to 43%. Overall, the evaluated plant-wide model is able to jointly describe the physico-chemical and biological processes, and is advocated for future use as a tool for design, performance evaluation and optimization of whole wastewater treatment plants

    Technologies to recover nutrients from waste streams: a critical review

    Get PDF
    Technologies to recover nitrogen, phosphorus, and potassium from waste streams have undergone accelerated development in the past decade, predominantly due to a surge in fertilizer prices and stringent discharge limits on these nutrients. This review provides a critical state of art review of appropriate technologies which identifies research gaps, evaluates current and future potential for application of the respective technologies, and outlines paths and barriers for adoption of the nutrient recovery technologies. The different technologies can be broadly divided into the sequential categories of nutrient accumulation, followed by nutrient release, followed by nutrient extraction. Nutrient accumulation can be achieved via plants, microorganisms (algae and prokaryotic), and physicochemical mechanisms including chemical precipitation, membrane separation, sorption, and binding with magnetic particles. Nutrient release can occur by biochemical (anaerobic digestion and bioleaching) and thermochemical treatment. Nutrient extraction can occur via crystallization, gas-permeable membranes, liquid-gas stripping, and electrodialysis. These technologies were analyzed with respect to waste stream type, the product being recovered, and relative maturity. Recovery of nutrients in a concentrated form (e.g., the inorganic precipitate struvite) is seen as desirable because it would allow a wider range of options for eventual reuse with reduced pathogen risk and improved ease of transportation. Overall, there is a need to further develop technologies for nitrogen and potassium recovery and to integrate accumulation-release-extraction technologies to improve nutrient recovery efficiency. There is a need to apply, demonstrate, and prove the more recent and innovative technologies to move these beyond their current infancy. Lastly, there is a need to investigate and develop agriculture application of the recovered nutrient products. These advancements will reduce waterway and air pollution by redirecting nutrients from waste into recovered nutrient products that provides a long-term sustainable supply of nutrients and helps buffer nutrient price rises in the future

    Impact of Storage Conditions on the Methanogenic Activity of Anaerobic Digestion Inocula

    Get PDF
    The impact of storage temperature (4, 22 and 37 ◦C) and storage time (7, 14 and 21 days) on anaerobic digestion inocula was investigated through specific methanogenic activity assays. Experimental results showed that methanogenic activity decreased over time with storage, regardless of storage temperature. However, the rate at which the methanogenic activity decreased was two and five times slower at 4 ◦C than at 22 and 37 ◦C, respectively. The inoculum stored at 4 ◦C and room temperature (22 ◦C) maintained methanogenic activity close to that of fresh inoculum for 14 days (<10% difference). However, a storage temperature of 4 ◦C is preferred because of the slower decrease in activity with lengthier storage time. From this research, it was concluded that inoculum storage time should generally be kept to a minimum, but that storage at 4 ◦C could help maintain methanogenic activity for longe

    Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes

    Get PDF
    This paper proposes a series of extensions to functionally upgrade the IWA Anaerobic Digestion Model No. 1 (ADM1) to allow for plant-wide phosphorus (P) simulation. The close interplay between the P, sulfur (S) and iron (Fe) cycles requires a substantial (and unavoidable) increase in model complexity due to the involved three-phase physico-chemical and biological transformations. The ADM1 version, implemented in the plant-wide context provided by the Benchmark Simulation Model No. 2 (BSM2), is used as the basic platform (A0). Three different model extensions (A1, A2, A3) are implemented, simulated and evaluated. The first extension (A1) considers P transformations by accounting for the kinetic decay of polyphosphates (XPP) and potential uptake of volatile fatty acids (VFA) to produce polyhydroxyalkanoates (XPHA) by phosphorus accumulating organisms (XPAO). Two variant extensions (A2,1/A2,2) describe biological production of sulfides (SIS) by means of sulfate reducing bacteria (XSRB) utilising hydrogen only (autolithotrophically) or hydrogen plus organic acids (heterorganotrophically) as electron sources, respectively. These two approaches also consider a potential hydrogen sulfide (ZH2SÞ inhibition effect and stripping to the gas phase (GH2S). The third extension (A3) accounts for chemical iron (III) (SFe3þ ) reduction to iron (II) (SFe2þ ) using hydrogen (SH2 ) and sulfides (SIS) as electron donors. A set of pre/post interfaces between the Activated Sludge Model No. 2d (ASM2d) and ADM1 are furthermore proposed in order to allow for plant-wide (model-based) analysis and study of the interactions between the water and sludge lines. Simulation (A1 e A3) results show that the ratio between soluble/particulate P compounds strongly depends on the pH and cationic load, which determines the capacity to form (or not) precipitation products. Implementations A1 and A2,1/A2,2 lead to a reduction in the predicted methane/biogas production (and potential energy recovery) compared to reference ADM1 predictions (A0). This reduction is attributed to two factors: (1) loss of electron equivalents due to sulfate ðSSO4 Þ reduction by XSRB and storage of XPHA by XPAO; and, (2) decrease of acetoclastic and hydrogenotrophic methanogenesis due to ZH2S inhibition. Model A3 shows the potential for iron to remove free SIS (and consequently inhibition) and instead promote iron sulfide (XFeS) precipitation. It also educes the quantities of struvite (XMgNH4PO4) and calcium hosphate (XCa3ðPO4Þ2) that are formed due to its higher affinity for phosphate anions. This study provides a detailed analysis of the different model assumptions, the effect that operational/design conditions have on the model predictions and the practical implications of the proposed model extensions in view of plant-wide modelling/development of resource recovery strategies

    ‘Now that I am connected this isn't social isolation, this is engaging with people’: Staying connected during the COVID‐19 pandemic

    Get PDF
    BackgroundThe COVID-19 global pandemic has put adults with intellectual/developmental disabilities at greater risk of being socially excluded due to physical distancing. Technology has been looked at as a tool for adults with intellectual/developmental disabilities to stay connected, however, little is known about this topic. The purpose of this study was to explore how a grassroots disability organisation used technology to help adults with intellectual/developmental disabilities feel socially connected during the pandemic.MethodsData were collected through questionnaires, attendance records, and field notes; and analysed through trend and thematic analysis.FindingsFour main themes emerged from the data: active leadership, mental wellbeing, technology/digital inclusion, and safety.ConclusionThese findings suggest that when participants overcome technological barriers they found it easy to socially connect online during lockdown
    corecore