3,894 research outputs found

    Erratum: Next-to-leading order supersymmetric QCD predictions for associated production of gauginos and gluinos [Phys. Rev. D 62, 095014 (2000)]

    Full text link
    Errors in the published version of the paper are corrected, and new figures are provided.Comment: 3 pages, latex, 4 figure

    Higgs Boson with Large Bottom Yukawa Coupling at Tevatron and LHC

    Get PDF
    We study the discovery reach of the Tevatron and the LHC for detecting a Higgs boson (h), predicted in composite models of the electroweak symmetry breaking or in supersymmetric theories, with an enhanced b-quark Yukawa coupling via p \bar{p} / p p \to b \bbar h (\to b \bbar) + X. Our analysis shows that studying this process at the Tevatron Run II or the LHC can provide strong constraints on these models.Comment: Revtex, 4 pages, Corrected 1 reference and a few typographical error

    Analysis of a new genetic cross between two East African Trypanosoma brucei clones

    Get PDF
    Two clones of East African Trypanosoma brucei, with distinct homozygous isoenzyme patterns for one of three enzymes examined, were cotransmitted through the tsetse fly vector Glossina morsitans centralis. Flies with mature infections were individually fed on mice and the subsequent bloodstream form populations analysed for the presence of hybrid trypanosomes by isoenzyme analysis. Several combinations have previously been detected using this approach (Schweizer, Tait & Jenni, 1988; Sternberg et al. 1989). Four clones were isolated from one of the hybrid-containing populations. They showed a hybrid phenotype, as would be expected for the F1 progeny in a diploid Mendelian system. The analysis of the progeny clones, using two gene probes which detect restriction fragment length polymorphisms between the two parental stocks, showed that alleles had segregated at each locus and given rise to three different non-parental combinations of alleles in the hybrid progeny. Characterization of the hybrid progeny clones by PFGE (pulsed field gradient gel electrophoresis) revealed that all progeny clones were recombinant for the intermediate size chromosomes. From the analysis of the segregation of the larger chromosomes, marked by P0K (phosphoglycerate kinase) and CP (cysteine protease) gene probes, it was inferred that the progeny clones did not result from a direct fusion of diploid cells. Results with the PGK probe fit into a classical system with meiosis and subsequent fusion of the nuclei to form diploid progeny. On the other hand, blots with the CP probe as well as some of the ethidium bromide stained PFGE gels revealed the existence of non-parental size chromosomes in some of the hybrid progeny. This phenomenon was observed previously (Gibson, 1989) and further investigation is required to elucidate the mechanis

    Z-prime Gauge Bosons at the Tevatron

    Full text link
    We study the discovery potential of the Tevatron for a Z-prime gauge boson. We introduce a parametrization of the Z-prime signal which provides a convenient bridge between collider searches and specific Z-prime models. The cross section for p pbar -> Z-prime X -> l^+ l^- X depends primarily on the Z-prime mass and the Z-prime decay branching fraction into leptons times the average square coupling to up and down quarks. If the quark and lepton masses are generated as in the standard model, then the Z-prime bosons accessible at the Tevatron must couple to fermions proportionally to a linear combination of baryon and lepton numbers in order to avoid the limits on Z--Z-prime mixing. More generally, we present several families of U(1) extensions of the standard model that include as special cases many of the Z-prime models discussed in the literature. Typically, the CDF and D0 experiments are expected to probe Z-prime-fermion couplings down to 0.1 for Z-prime masses in the 500--800 GeV range, which in various models would substantially improve the limits set by the LEP experiments.Comment: 34 pages, 13 figure

    Allometric relationships and community biomass estimates for some dominant eucalypts in Central Queensland woodlands

    Get PDF
    Allometric equations are presented relating stem circumference to branch, leaf, trunk, bark, total above-ground and lignotuber biomass for Eucalyptus crebra F.Muell. (woodland trees), E. melanophloia Sol. Ex Gaerth. (both woodland and regrowth community trees) and E. populnea F.Muell. (woodland trees). There were no significant differences (P > 0.05) between the slopes of individual lognormal regression lines plotting stem circumference against total above-ground biomass for E. crebra, E. melanophloia and E. populnea. Root-to-shoot ratios and leaf area indices were also determined for the stands contributing to each regression. The regressions were then applied to measured eucalypt stems in the associated plant community to give estimates of each stand’s component (eucalypt tree fraction only) biomass per hectare. These eucalypt regressions were next applied to measured stems of each species on a total of 33 woodland sites in which these eucalypts individually contributed > 75% of total site basal area. Above-ground biomass/basal area relationships averaged 6.74 0.29 t m–2 basal area for 11 E. crebra sites, 5.11 0.28 t m–2 for 12 E. melanophloia sites and 5.81 0.11 t m–2 for 10 E. populnea sites. The mean relationship for all sites was 5.86 0.18 t m–2 basal area. The allometric relationships presented at both individual tree and stand levels, along with calculated biomass : basal area relationships, enable ready estimates to be made of above-ground biomass (carbon stocks) in woodlands dominated by these eucalypts in Queensland, assuming individual stem circumferences or community basal areas are known. However, to document changes in carbon stocks (e.g. for Greenhouse Gas Inventory or Carbon Offset trading purposes), more attention needs to be placed on monitoring fluxes in the independent variables (predictors) of these allometric equations

    Population genetics of trypanosoma brucei rhodesiense: clonality and diversity within and between foci

    Get PDF
    African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics

    Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier

    Full text link
    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the program of research relevant to cosmology and the early universe. This area includes the study of dark matter and the search for its particle nature, the study of dark energy and inflation, and cosmic probes of fundamental symmetries.Comment: 61 page

    Flavor changing scalar couplings and tγ(Z)t\gamma(Z) production at hadron colliders

    Full text link
    We calculate the contributions of the flavor changing scalar (FCSFCS) couplings arised from topcolor-assisted technicolor (TC2TC2) models at tree-level to the tγt\gamma and tZtZ production at the Tevatron and LHCLHC experiments. We find that the production cross sections are very small at the Tevatron with s=1.96TeV\sqrt{s}=1.96TeV, which is smaller than 5 fb in most of the parameter space of TC2TC2 models. However, the virtual effects of the FCSFCS couplings on the tγ(Z)t\gamma(Z) production can be easily detected at the LHCLHC with s=14TeV\sqrt{s}=14TeV via the final state γlνˉb\gamma l\bar{\nu}b (l+llνˉbl^{+}l^{-}l\bar{\nu}b).Comment: 10 pages,5 figure
    corecore