96 research outputs found

    Novel morphometric analysis of higher order structure of human radial peri-papillary capillaries: relevance to retinal perfusion efficiency and age

    Get PDF
    We apply novel analyses to images of superfcial capillaries that are located near and around the optic disc of the human retina: the radial peri-papillary capillaries (RPCs). Due to their unique perfusion of the nerve fbre layer the RPCs are particularly signifcant for optic-neuropathies. The inputs to the analysis were z-stacks from 3D confocal fuorescence microscopy from 62 human retinas aged 9 to 84 years. Our aim was to fnd morphometric correlates of age. The retinas had no ophthalmic history. The analysis was undertaken in two stages: (1) converting the z-stacks to 3D tubular networks of vessels, and (2) characterizing the tubular networks using features derived from the Minkowski functionals (MFs). The MFs measure: the capillary volume, surface area, mean breadth, and Euler number. The mean breadth is related to tortuosity, wall shear stress and resistance to fow, and the Euler number is related to the density of loops (collaterals). Features derived from the surface area, mean breadth and Euler number were most related to age (all p≤0.006). The results indicate the importance of pressure-equalizing loops and tortuosity as quantitative measures related to perfusion efciency. The novel morphometric analysis could quantify disease-related accelerated aging and vessel malformation.Tis research was supported by Australian Research Council through the ARC Centre of Excellence in Vision Science CE0561903 and LP140100763, and Baxter Charitable Foundation and NHMRC Principal Research Fellowship, 1005730 to TCL

    Role of CD44 + Stem Cells in Mural Cell Formation in the Human Choroid: Evidence of Vascular Instability Due to Limited Pericyte Ensheathment

    Get PDF
    PURPOSE. To examine mural cell differentiation and pericyte ensheathment during human choroidal vascular formation and into adulthood. METHODS. Triple- and double-labeled immunohistochemistry (alpha-smooth muscle actin [αSMA], desmin, NG2, calponin, cal

    Loss of survival factors and activation of inflammatory cascades in brain sympathetic centers in type 1 diabetic mice

    Get PDF
    Neuroinflammation and neurodegeneration have been observed in the brain in type 1 diabetes (T1D). However, little is known about the mediators of these effects. In T1D mice with 12- and 35-wk duration of diabetes we examined two mechanisms of neurodegeneration, loss of the neuroprotective factors insulin-like growth factor I (IGF-I) and IGF-binding protein-3 (IGFBP-3) and changes in indoleamine 2,3-dioxygenase (IDO) expression in the brain, and compared the response to age-matched controls. Furthermore, levels of matrix metalloproteinase-2 (MMP-2), nucleoside triphosphate diphosphohydrolase-1 (CD39), and ionized calcium-binding adaptor molecule 1 (Iba-1) were utilized to assess inflammatory changes in astrocytes, microglia, and blood vessels. In the diabetic hypothalamus (HYPO), we observed 20% reduction in neuronal soma diameter (P<0.05) and reduced neuronal expression of IGFBP-3 (-32%, P<0.05) and IGF-I (-15%, P<0.05) compared with controls at 35 wk. In diabetic HYPO, MMP-2 expression was increased in astrocytes (46%, P<0.01), and IDO⁺ cell density rose by (62%, P<0.05). CD39 expression dropped by 30% (P<0.05) in microglia and blood vessels. With 10 wk of systemic treatment using minocycline, an anti-inflammatory agent that crosses the blood-brain barrier, MMP-2, IDO, and CD39 levels normalized (P<0.05). Our results suggest that increased IDO and early loss of CD39⁺ protective cells lead to activation of inflammation in sympathetic centers of the CNS. As a downstream effect, the loss of the neuronal survival factors IGFBP-3 and IGF-I and the neurotoxic products of the kynurenine pathway contribute to the loss of neuronal density observed in the HYPO in T1D

    Differential expression of sirtuins in the aging rat brain

    Get PDF
    Although there are seven mammalian sirtuins (SIRT1-7), little is known about their expression in the aging brain. To characterize the change(s) in mRNA and protein expression of SIRT1-7 and their associated proteins in the brain of "physiologically" aged Wistar rats. We tested mRNA and protein expression levels of rat SIRT1-7, and the levels of associated proteins in the brain using RT-PCR and western blotting. Our data shows that SIRT1 expression increases with age, concurrently with increased acetylated p53 levels in all brain regions investigated. SIRT2 and FOXO3a protein levels increased only in the occipital lobe. SIRT3-5 expression declined significantly in the hippocampus and frontal lobe, associated with increases in superoxide and fatty acid oxidation levels, and acetylated CPS-1 protein expression, and a reduction in MnSOD level. While SIRT6 expression declines significantly with age acetylated H3K9 protein expression is increased throughout the brain. SIRT7 and Pol I protein expression increased in the frontal lobe. This study identifies previously unknown roles for sirtuins in regulating cellular homeostasis and healthy aging.16 page(s

    P2X7 is an archaic scavenger receptor recognizing apoptotic neuroblasts in early human neurogenesis

    Get PDF
    The expression and function of P2X7 receptors in adult CNS have been widely studied, however, the roles of these purinergic receptors in human neural development has largely focused on the effects of receptor activation. Previous studies of embryonic and adult rodent neural precursors suggest adenosine triphosphate (ATP), the physiological agonist for P2X receptors, can act as a potent modifier of proliferation, migration and differentiation, mediated via intracellular calcium ([Ca2+]i) signaling. The P2X7 receptor has a ubiquitous distribution in the body but is most abundant on macrophages and microglia where its activation by ATP leads to secretion of proinflammatory cytokines. However, extracellular ATP concentrations in the CNS are usually at sub-micromolar levels suggesting that ATP-induced activation of the P2X7 receptor will not occur under physiological circumstances in the CNS. Another possible role for P2X7 receptors has been suggested by recent work on macrophages and neural precursor cells. In these studies the P2X7 receptor was shown to act as a scavenger receptor i.e. a receptor present on a phagocytotic cell which detects molecules present on the surface of apoptotic cells and facilitates phagocytosis of the apoptotic cell. In a recent study of human neural precursor cells (hNPCs) and neuroblasts isolated from human fetal telencephalons at 16-19 WG, our group showed that both P2X7Rhigh/DCXlow hNPCs and P2X7Rhigh/DCXhigh neuroblasts were capable of phagocytic engulfment of a range of targets including latex beads, apoptotic ReN cells and apoptotic neuroblasts. We found that these neuroblasts and their precursor cells expressed functional P2X7 receptors on their cell surface. Although expression of P2X7 is widespread in the cells of the neuroblast, it is those DCX+ neuroblasts with the highest expression of P2X7 which are actively phagocytic towards an autologous apoptotic neighbour or other phagocytic targets, including latex beads and apoptotic ReNcells. Pre-incubation of P2X7high neuroblasts with ATP or oxidized ATP inhibited phagocytosis of targets by these cells. Moreover siRNA knockdown of P2X7R also inhibited phagocytosis of the apoptotic targets. This review considers this major new role for the P2X7 receptor in early human neurogenesis

    A Role of Canonical Transient Receptor Potential 5 Channel in Neuronal Differentiation from A2B5 Neural Progenitor Cells

    Get PDF
    Store-operated Ca2+ entry (SOCE) channels are the main pathway of Ca2+ entry in non-excitable cells such as neural progenitor cells (NPCs). However, the role of SOCE channels has not been defined in the neuronal differentiation from NPCs. Here, we show that canonical transient receptor potential channel (TRPC) as SOCE channel influences the induction of the neuronal differentiation of A2B5+ NPCs isolated from postnatal-12-day rat cerebrums. The amplitudes of SOCE were significantly higher in neural cells differentiated from proliferating A2B5+ NPCs and applications of SOCE blockers, 2-aminoethoxy-diphenylborane (2-APB), and ruthenium red (RR), inhibited their rise of SOCE. Among TRPC subtypes (TRPC1-7), marked expression of TRPC5 and TRPC6 with turned-off TRPC1 expression was observed in neuronal cells differentiated from proliferating A2B5+ NPCs. TRPC5 small interfering RNA (siRNA) blocked the neuronal differentiation from A2B5+ NPCs and reduced the rise of SOCE. In contrast, TRPC6 siRNA had no significant effect on the neuronal differentiation from A2B5+ NPCs. These results indicate that calcium regulation by TRPC5 would play a key role as a switch between proliferation and neuronal differentiation from NPCs

    Augmentation of Neovascularizaiton in Hindlimb Ischemia by Combined Transplantation of Human Embryonic Stem Cells-Derived Endothelial and Mural Cells

    Get PDF
    BACKGROUND: We demonstrated that mouse embryonic stem (ES) cells-derived vascular endothelial growth factor receptor-2 (VEGF-R2) positive cells could differentiate into both endothelial cells (EC) and mural cells (MC), and termed them as vascular progenitor cells (VPC). Recently, we have established a method to expand monkey and human ES cells-derived VPC with the proper differentiation stage in a large quantity. Here we investigated the therapeutic potential of human VPC-derived EC and MC for vascular regeneration. METHODS AND RESULTS: After the expansion of human VPC-derived vascular cells, we transplanted these cells to nude mice with hindlimb ischemia. The blood flow recovery and capillary density in ischemic hindlimbs were significantly improved in human VPC-derived EC-transplanted mice, compared to human peripheral and umbilical cord blood-derived endothelial progenitor cells (pEPC and uEPC) transplanted mice. The combined transplantation of human VPC-derived EC and MC synergistically improved blood flow of ischemic hindlimbs remarkably, compared to the single cell transplantations. Transplanted VPC-derived vascular cells were effectively incorporated into host circulating vessels as EC and MC to maintain long-term vascular integrity. CONCLUSIONS: Our findings suggest that the combined transplantation of human ES cells-derived EC and MC can be used as a new promising strategy for therapeutic vascular regeneration in patients with tissue ischemia

    Short-Term Withdrawal of Mitogens Prior to Plating Increases Neuronal Differentiation of Human Neural Precursor Cells

    Get PDF
    Background: Human neural precursor cells (hNPC) are candidates for neural transplantation in a wide range of neurological disorders. Recently, much work has been done to determine how the environment for NPC culture in vitro may alter their plasticity. Epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) are used to expand NPC; however, it is not clear if continuous exposure to mitogens may abrogate their subsequent differentiation. Here we evaluated if short-term removal of FGF-2 and EGF prior to plating may improve hNPC differentiation into neurons.Principal Findings: We demonstrate that culture of neurospheres in suspension for 2 weeks without EGF-FGF-2 significantly increases neuronal differentiation and neurite extension when compared to cells cultured using standard protocols. in this condition, neurons were preferentially located in the core of the neurospheres instead of the shell. Moreover, after plating, neurons presented radial rather than randomly oriented and longer processes than controls, comprised mostly by neurons with short processes. These changes were followed by alterations in the expression of genes related to cell survival.Conclusions: These results show that EGF and FGF-2 removal affects NPC fate and plasticity. Taking into account that a three dimensional structure is essential for NPC differentiation, here we evaluated, for the first time, the effects of growth factors removal in whole neurospheres rather than in plated cell culture.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institutos do Milenio de Bioengenharia TecidualUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, São Paulo, BrazilUniv Fed Rio de Janeiro, Inst Ciencias Biomed, BR-21941 Rio de Janeiro, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, São Paulo, BrazilFAPESP: fellowCNPq: fellowWeb of Scienc

    Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy

    Get PDF
    Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders
    corecore