12 research outputs found
Capturing structural changes of the S-1 to S-2 transition of photosystem II using time-resolved serial femtosecond crystallography
Photosystem II (PSII) catalyzes light-induced water oxidation through an S-i-state cycle, leading to the generation of di-oxygen, protons and electrons. Pumpprobe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S-1-to-S-2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S-2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S-1-to-S-2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed
Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL
Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previousl
Selective Attention Measurement of Experienced Simultaneous Interpreters Using EEG Phase-Locked Response
We quantified the electroencephalogram signals associated with the selective attention processing of experienced simultaneous interpreters and calculated the phase-locked responses evoked by a 40-Hz auditory steady-state response (40-Hz ASSR) and the values of robust inter-trial coherence (ITC) for environmental changes. Since we assumed that an interpreter's attention ability improves with an increase in the number of years of experience of simultaneous interpretation, we divided the participants into two groups based on their simultaneous interpretation experience: experts with more than 15 years of experience (E group; n = 7) and beginners with <1 year (B group; n = 15). We also compared two conditions: simultaneous interpretation (SI) and shadowing (SH). We found a significant interaction in the ITC between years of SI experience (E and B groups) and tasks (SI and SH). This result demonstrates that the number of years of SI experience influences selective attention during interpretation
Crystal structure and redox properties of a novel cyanobacterial heme-protein with a His/Cys heme axial ligation and a per-arnt-sim (PAS)-like domain
International audiencePhotosystem II (PSII) catalyzes the light-induced water oxidation leading to the generation of dioxygen indispensable for sustaining aerobic life on Earth. The PSII reaction center is composed of D1 and D2 proteins encoded by the psbA and psbD genes, respectively. In cyanobacteria, different psbA genes are present in the genome. The thermophilic cyanobacterium Thermosynechococcus elongatus contains 3 psbA genes, psbA1, psbA2 and psbA3 and a new c-type heme protein, Tll0287, was found to be expressed in a strain expressing the psbA2 gene only, but the structure and function of Tll0287 are unknown. Here we solved the crystal structure of Tll0287 at a 2.0 Å resolution. The overall structure of Tll0287 was found to be similar to some kinases and sensor proteins with a per-arnt-sim (PAS)-like domain, rather than to other c-type cytochromes. The 5th and 6th axial ligands for the heme were Cys and His, instead of the His/Met or His/His ligand pairs observed for most of the c-type hemes. The redox potential, E1/2, of Tll0287 was -255 ± 20 mV versus normal hydrogen electrode at pH values above 7.5. Below this pH value, the E1/2 increased by ≈57 mV/pH unit at 15°C, suggesting the involvement of a protonatable group with a pKred = 7.2 ± 0.3. Possible functions of Tll0287 as a redox sensor under micro-aerobic conditions or a cytochrome subunit of an H2S-oxidising system, are discussed in view of the environmental conditions in which psbA2 is expressed as well as phylogenetic analysis, structural and sequence homologie
An alternative plant-like cyanobacterial ferredoxin with unprecedented structural and functional properties: Ferredoxin with low Em discriminating against FNR
International audiencePhotosynthetic [2Fe-2S] plant-type ferredoxins have a central role in electron transfer between the photosynthetic chain and various metabolic pathways. Several genes are coding for [2Fe2S] ferredoxins in cyanobacteria, with four in the thermophilic cyanobacterium Thermosynechococcus elongatus. The structure and functional properties of the major ferredoxin Fd1 are well known but data on the other ferredoxins are scarce. We report the structural and functional properties of a novel minor type ferredoxin, Fd2 of T. elongatus, homologous to Fed4 from Synechocystis sp. PCC 6803. Remarkably, the midpoint potential of Fd2, Em = -440 mV, is lower than that of Fd1, Em = -372 mV. However, while Fd2 can efficiently react with photosystem I or nitrite reductase, time-resolved spectroscopy shows that Fd2 has a very low capacity to reduce ferredoxin-NADP+ oxidoreductase (FNR). These unique Fd2 properties are discussed in relation with its structure, solved at 1.38 Å resolution. The Fd2 structure significantly differs from other known ferredoxins structures in loop 2, N-terminal region, hydrogen bonding networks and surface charge distributions. UV-Vis, EPR, and Mid- and Far-IR data also show that the electronic properties of the [2Fe2S] cluster of Fd2 and its interaction with the protein differ from those of Fd1 both in the oxidized and reduced states. The structural analysis allows to propose that valine in the motif Cys53ValAsnCys56 of Fd2 and the specific orientation of Phe72, explain the electron transfer properties of Fd2. Strikingly, the nature of these residues correlates with different phylogenetic groups of cyanobacterial Fds. With its low redox potential and its discrimination against FNR, Fd2 exhibits a unique capacity to direct efficiently photosynthetic electrons to metabolic pathways not dependent on FNR
Unraveling the crystal structure of Leptospira kmetyi riboflavin synthase and computational analyses for potential development of new antibacterials
Over the last decade, an escalating number of reported cases of leptospirosis in Malaysia has resulted in a significant number of deaths. Leptospirosis is caused by Leptospira sp., which is disseminated by soil and water. Due to the absolute dependence of microbes on this biosynthesis pathway coupled with its non-existence in humans, the structural analysis of riboflavin synthase as a potential target for the development of antimicrobial agents is very significant. Riboflavin synthase (E.C 2.5.1.9) is an important enzyme that catalyzes the last stage of riboflavin biosynthesis. Riboflavin synthase from the locally isolated pathogenic bacterium Leptospira kmetyi was cloned and expressed in Escherichia coli. The protein was purified and crystallized for X-ray analysis. The crystal structure of riboflavin synthase from L. kmetyi has been determined at 3.2 Å and belonged to the orthorhombic space group P212121, with an R-factor of 21.8%. The calculated Matthews coefficient (VM) was 2.94 Å3Da−1 with a solvent content of 58.24 %. There are three molecules present in the asymmetric unit. The structure was analyzed with potential inhibitors via molecular docking and molecular dynamics simulation. The complex with compound 1 had the best possible interaction and stability for a 100 ns simulation. The existence of this crystal structure enables its structural properties to be unveiled and facilitates the application of structure-based drug discovery approach. This study sheds light on the development of new potential antibacterial drugs that may be beneficial for the treatment of leptospirosis or other infectious diseases associated with it