1,732 research outputs found

    Bioresorbable Film for the Prevention of Adhesion to the Anterior Spine After Anterolateral Discectomy

    Get PDF
    Background context The development of scar tissue and adhesions postoperatively is a natural consequence of healing but can be associated with medical complications and render reoperation difficult. Many biocompatible products have been evaluated as barriers or deterrents to adhesions. Purpose To evaluate the efficacy of a bioresorbable polylactide film as a barrier to adhesion formation after anterolateral discectomy. Study design Experimental study. Methods Seven, skeletally mature female sheep underwent a retroperitoneal approach to the anterolateral lumbar spine. A discectomy was performed at two levels with an intervening unoperated disc site. One site was treated with a polylactide film barrier (Hydrosorb Shield; MacroPore Biosurgery, San Diego, CA) affixed with tacks manufactured from the same material. The second site was left untreated. Treatment and control sites were randomly assigned. Postmortem analysis included scar tenacity scoring on five spines and histological evaluation on two spines. Results The application of the Hydrosorb film barrier allowed a definite dissection plane during scar tenacity scoring and there was a significant difference in the development of adhesions to the disc between the control and treated sites. Histological evaluation revealed evidence of barrier formation to scar tissue and no significant adverse inflammatory reactions. Conclusions Hydrosorb Shield appears to be an effective postoperative barrier to scar tissue adhesion after anterolateral discectomy. The use of polylactide tacks was beneficial to affix the barrier film in place. Safety issues associated with delayed healing or adverse response to the film or tacks were not observed. Hydrosorb film may be useful as an antiadhesion barrier facilitating dissection during surgical revision in anterior approaches to the spine. Further studies are indicated to evaluate the performance of the bioresorbable material as an antiadhesion barrier in techniques of spinal fusion and disc replacement

    Periodic Health Examinations and Missed Opportunities among Patients Likely Needing Mental Health Care

    Get PDF
    Periodic health examinations (PHEs) are the most common reason adults see primary care providers. It is unknown if PHEs serve as a "safe portal" for patients with mental health needs to initiate care. We examined how physician communication styles impact mental health service delivery in PHEs

    Introducing Human APOE into Aβ Transgenic Mouse Models

    Get PDF
    Apolipoprotein E (apoE) and apoE/amyloid-β (Aβ) transgenic (Tg) mouse models are critical to understanding apoE-isoform effects on Alzheimer's disease risk. Compared to wild type, apoE−/− mice exhibit neuronal deficits, similar to apoE4-Tg compared to apoE3-Tg mice, providing a model for Aβ-independent apoE effects on neurodegeneration. To determine the effects of apoE on Aβ-induced neuropathology, apoE−/− mice were crossed with Aβ-Tg mice, resulting in a significant delay in plaque deposition. Surprisingly, crossing human-apoE-Tg mice with apoE−/−/Aβ-Tg mice further delayed plaque deposition, which eventually developed in apoE4/Aβ-Tg mice prior to apoE3/Aβ-Tg. One approach to address hAPOE-induced temporal delay in Aβ pathology is an additional insult, like head injury. Another is crossing human-apoE-Tg mice with Aβ-Tg mice that have rapid-onset Aβ pathology. For example, because 5xFAD mice develop plaques by 2 months, the prediction is that human-apoE/5xFAD-Tg mice develop plaques around 6 months and 12 months before other human-apoE/Aβ-Tg mice. Thus, tractable models for human-apoE/Aβ-Tg mice continue to evolve

    Design and Investigation of RGB-type LED Visible Light Communication System

    Get PDF
    This paper examines the feasibility of a Red Green Blue (RGB)-type Light Emitting Diode (LED) Visible Light Communication (VLC) system based on wavelength division multiplexing (WDM). Each color in the RGB-LED is individually modulated to increase the data rate by three times as compared to the single channel modulation approach used in conventional VLC system. Color filters are employed to detect separately the RGB signals at the receiver side. The proposed system utilized a reflector to improve the performance and the system is lens-free. In this work, an approach of approximated WDM testing is adopted due to the incapability of multiplexing by the microcontroller at higher data rate. The proposed system is demonstrated to transmit and receive data at a maximum distance of 1.4m, with total data transmission speed of 345.6 kbps using standard WDM, while a total speed of 1.5 Mbps up to maximum distance of 1.2m and 3 Mbps up to maximum distance of 0.7m is achieved by the approach of approximated WDM testing

    Cortico-cortical feedback engages active dendrites in visual cortex

    Get PDF
    Sensory processing in the neocortex requires both feedforward and feedback information flow between cortical areas 1. In feedback processing, higher-level representations provide contextual information to lower levels, and facilitate perceptual functions such as contour integration and figure–ground segmentation 2,3. However, we have limited understanding of the circuit and cellular mechanisms that mediate feedback influence. Here we use long-range all-optical connectivity mapping in mice to show that feedback influence from the lateromedial higher visual area (LM) to the primary visual cortex (V1) is spatially organized. When the source and target of feedback represent the same area of visual space, feedback is relatively suppressive. By contrast, when the source is offset from the target in visual space, feedback is relatively facilitating. Two-photon calcium imaging data show that this facilitating feedback is nonlinearly integrated in the apical tuft dendrites of V1 pyramidal neurons: retinotopically offset (surround) visual stimuli drive local dendritic calcium signals indicative of regenerative events, and two-photon optogenetic activation of LM neurons projecting to identified feedback-recipient spines in V1 can drive similar branch-specific local calcium signals. Our results show how neocortical feedback connectivity and nonlinear dendritic integration can together form a substrate to support both predictive and cooperative contextual interactions

    Repeated administration of phytocannabinoid Δ9-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner

    Get PDF
    These studies probed the relationship between intrinsic efficacy and tolerance / cross-tolerance between Δ9-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects and cellular changes concomitant with their repeated administration in mice. Dose-effect relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 and JWH-073 are higher efficacy agonists than Δ9-THC in mice. Separate groups of mice were treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0 mg/kg or 10.0 mg/kg, respectively) or a maximally hypothermic dose of 30.0 mg/kg Δ9-THC once per day for 5 consecutive days while core temperature and locomotor activity were monitored via biotelemetry. Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not locomotor effects, and this tolerance was still evident 14 days after the last drug administration. Further studies treated mice with 30.0 mg/kg Δ9-THC once per day for 4 days, then tested with SCBs on day 5. Mice with a Δ9-THC history were cross-tolerant to both SCBs, and this cross-tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice were examined for changes in CB1 receptor expression and function. Expression and function of hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression and function were not altered. Collectively, these data demonstrate that repeated Δ9-THC, JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely mediated by region-specific downregulation and desensitization of CB1Rs

    Annex 6: Changing Ocean Impacts on the Key Forage Fish Species Arctic Cod in the Western Canadian Arctic – Linking Climate Model Projections to Subsistence Fisheries

    Get PDF
    This annex highlights the results of a study focusing on the potential impacts of ocean acidification and other climate- related stressors on marine species relevant for subsistence fisheries in the Western Arctic Bioregion. The study uses a knowledge co-production approach developed in the form of a multi-step process based on a combination of modelling and analysis tools including the Scientific Method and Indigenous Traditional Knowledge (Figure A6.1). Once all steps have been completed, uncertainties can be estimated and improvements can be made either with respect to the individual steps or to the linkages between them. The process can then be repeated, including those improvements to provide a revised assessment with reduced uncertainty ranges. The steps can be summarized as follows: (1) analyze past observed trends; (2) perform projection simulations with global and regional climate models, allowing trend estimates on 20–50 year timescales; (3) assess physiological responses and thresholds in marine species via literature research, Indigenous Traditional Knowledge, observations and focused laboratory experiments; (4) add trends, climate model projections and physiological response data to species distribution / habitat suitability and higher trophic level Ecosim/ Ecopath (see Section A6.3) models; (5) assess socio-economic impacts by applying bio-economic models, evaluating current fishery-economic activities, and discussion with communities/ community representatives; and (6) review law and governance. The latter addresses adaptation measures on global, regional and national scales. This annex describes the first application of the multi-step framework in the Western Arctic Bioregion. At this point in time all the required tools have been developed, but not all components have been adequately linked. For example, while higher resolution model projections are available for the area the habitat suitability and economic models are still driven by global climate models, the Ecopath model (see Section on The Beaufort Sea food web model) has not yet been run into the future and physiological responses are reflected in the higher trophic level models to a limited extent, if at all. In addition, while collaboration with local communities has been established (see Section on Community interests), Indigenous Traditional Knowledge has been included to a very limited extent. To summarize, this case study provides an assessment that includes all required tools, but limited linkages. It has a strong focus on uncertainty analyses and the identification of gaps in knowledge. Particular emphasis is given to the key forage fish species Arctic cod (Boreogadus saida), since climate model projections can be linked more directly to key forage species than to the (mostly) higher trophic level species harvested

    Introduction

    Get PDF
    The escalation of land use conversion to agriculture is one of the key drivers of the decline in critical ecosystem function and biodiversity. Vast areas of forest in the tropics have been cleared and planted for various agricultural crops including oil palm, which is one of the most important crops in many tropical countries especially Indonesia and Malaysia. The establishment of oil palm plantations is an incredibly intensive process, involving converting native vegetation, usually degraded land or logged over forest to a plantation, often leaving behind fragmented and isolated rainforest in an oil palm matrix
    corecore