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Abstract

These studies probed the relationship between intrinsic efficacy and tolerance / cross-tolerance 

between Δ9-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects 

and cellular changes concomitant with their repeated administration in mice. Dose-effect 

relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 

and JWH-073 are higher efficacy agonists than Δ9-THC in mice. Separate groups of mice were 

treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0 mg/kg or 10.0 

mg/kg, respectively) or a maximally hypothermic dose of 30.0 mg/kg Δ9-THC once per day for 5 

consecutive days while core temperature and locomotor activity were monitored via biotelemetry. 

Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not 

locomotor effects, and this tolerance was still evident 14 days after the last drug administration. 

Further studies treated mice with 30.0 mg/kg Δ9-THC once per day for 4 days, then tested with 

SCBs on day 5. Mice with a Δ9-THC history were cross-tolerant to both SCBs, and this cross-

tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice 

Corresponding author: William E. Fantegrossi, Ph.D, Department of Pharmacology & Toxicology, College of Medicine, University 
of Arkansas for Medical Sciences, 4301 W. Markham Street - Mail Slot 638, Little Rock, AR 72205-7199, Phone: (501) 686-8645, 
Fax: (501) 686-8970, WEFantegrossi@uams.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflict of Interest
The authors declare that they have no conflicts of interest involving this work.

Authorship Contributions
Participated in research design: Fantegrossi, Prather
Conducted experiments: Hyatt, Gu, Franks, Brents, Vasiljevik, Tai, Fantegrossi
Contributed new reagents or analytic tools: Vasiljevik
Performed data analysis: Tai, Fantegrossi, Prather
Wrote or contributed to the writing of the manuscript: Tai, Fantegrossi, Prather

HHS Public Access
Author manuscript
Pharmacol Res. Author manuscript; available in PMC 2016 December 01.

Published in final edited form as:
Pharmacol Res. 2015 December ; 102: 22–32. doi:10.1016/j.phrs.2015.09.006.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were examined for changes in CB1 receptor expression and function. Expression and function of 

hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression 

and function were not altered. Collectively, these data demonstrate that repeated Δ9-THC, 

JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely 

mediated by region-specific downregulation and desensitization of CB1Rs.
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1. Introduction

In recent years, high efficacy synthetic cannabinoids (SCBs) have proliferated as 

psychoactive constituents in commercial smoking preparations, typically advertised as 

“marijuana alternatives” or “herbal incense” and usually branded as K2 or Spice. Product 

surveillance and analytical testing have detected numerous formulations for these 

cannabinoids, including powders, capsules, liquids, and smoking mixtures (Verster, 2010; 

Seely et al., 2013). Among the first synthetic cannabinoids detected in these products were 

JWH-018 (1-pentyl-3-(1-naphthoyl)indole) and JWH-073 (1-butyl-3-(1-naphthoyl)indole), 

both of which bind with high affinity and act as full agonists at cannabinoid type 1 receptors 

(CB1Rs) (Huffman et al., 1994). Since the initial appearance of these products on the illicit 

market, product composition has rapidly changed in order to stay ahead of drug scheduling 

laws. Thus, in addition to a number of Huffman aminoalkylindoles (the “JWH” series), other 

synthetic cannabinoids including the Δ9-THC analogue HU-210 (1,1-dimethylheptyl-11-

hydroxytetrahydrocannabinol), a number of cyclohexylphenols (including CP-47,497 and 

CP-55,940), and several other indole-derived cannabinoids (such as the fluorinated analogue 

of JWH-018, AM-2201) have also been detected (Seely et al., 2012). Despite the diversity of 

the psychoactive constituents of these products, a common feature has been their higher 

CB1R efficacy, as compared to the partial CB1R agonist Δ9-THC.

Repeated administration of cannabinoid agonists has been shown to result in tolerance to 

several central and peripheral effects in laboratory animals (Dewey, 1986; Abood and 

Martin, 1992; Maldonado and Rodriguez de Fonseca, 2002), and to cellular effects observed 

in vitro (reviewed by Pertwee, 1991). In human marijuana users, tolerance to numerous 
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cannabinoid effects has also been reported following smoked (Jones et al., 1981; Hollister, 

1986; Ramaekers et al., 2011) and oral (Benowitz and Jones, 1975; Hunt and Jones, 1980; 

Gorelick et al., 2013) administration of Δ9-THC. This raises the possibility that a history of 

Δ9-THC administration might also render individuals less sensitive to some effects of the 

higher efficacy SCBs through the phenomenon of cross-tolerance. However, much of what 

is known regarding tolerance to drug effects comes from the study of opioids, where 

intrinsic efficacy is a critical factor in both the development of tolerance and the degree of 

cross-tolerance observed across in vivo effects (Paronis and Holtzman, 1992; Walker and 

Young, 2001). In this regard, tolerance to specific opioid effects induced by repeated 

treatment with a high efficacy agonist elicit even greater cross-tolerance when low efficacy 

drugs are tested, while tolerance to specific drug effects produced by treatment with a low 

efficacy agonist can be at least partially surmounted by administration of a high efficacy 

compound. But whether this relationship between tolerance, cross-tolerance, and intrinsic 

efficacy extends to cannabinoids remains largely unknown.

In order to better understand the relationship between intrinsic efficacy and tolerance/cross-

tolerance among the cannabinoids, the present studies utilized radiotelemetry to 

simultaneously monitor core temperature and locomotor activity in mice receiving daily 

treatments of Δ9-THC, JWH-018 or JWH-073 (Figure 1) to determine the development and 

expression of tolerance to these two classical effects of the well-characterized “cannabinoid 

tetrad” (Compton et al., 1992). In separate cross-tolerance experiments, the hypothermic and 

locomotor effects of JWH-018 and JWH-073 were assessed in mice with or without a prior 

history of Δ9-THC administration. Mechanisms for changes in drug effects following 

repeated administration were investigated using brain tissue harvested from drug-naïve or 

Δ9-THC-treated mice. Ex vivo assays of CB1R expression and function were performed in 

hypothalamus and cortex, as these brain regions at least partially mediate the 

thermoregulatory and locomotor effects, respectively, studied in mice. As reports of toxicity 

and mortality related to illicit use of synthetic cannabinoids accumulate (Auwarter et al., 

2009; Zimmermann et al., 2009; Every-Palmer, 2010; Muller et al., 2010; Vardakou et al., 

2010; Vearrier and Osterhoudt, 2010; Schneir et al., 2011; Gunderson et al., 2012; Seely et 

al., 2012; Nacca et al., 2013), it is critical to better understand the mechanisms of tolerance 

associated with repeated cannabinoid exposure. As with other classes of abused drugs, 

including benzodiazepines (Lalive et al., 2011), opioids (Morgan and Christie, 2011), and 

psychostimulants (Bradberry, 2002), tolerant users of synthetic cannabinoids may also 

attempt to overcome diminished drug effects by escalating dose, thereby dramatically 

increasing exposure and the concomitant risk of toxicity.

2. Materials and Methods

2.1 Animals

Prior to surgery (see section 2.2), male NIH Swiss mice (Harlan Sprague Dawley Inc., 

Indianapolis, IN), weighing approximately 25–30 g, were housed 3 animals per Plexiglas 

cage (15.24 × 25.40 × 12.70 cm) in a temperature-controlled room at the University of 

Arkansas for Medical Sciences. Room conditions were maintained at an ambient 

temperature of 22 ± 2°C at 45–50% humidity. Lights were set to a 12-h light/dark cycle. 
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Animals were fed Lab Diet rodent chow (Laboratory Rodent Diet #5001, PMI Feeds, Inc., 

St. Louis, MO) and water ad libitum until immediately before testing. Animals were 

acclimated to the laboratory environment 2 days prior to experiments and were tested in 

groups of 5–6 mice per condition. All studies were carried out in accordance with the 

Declaration of Helsinki and with the Guide for Care and Use of Laboratory animals as 

adopted and promulgated by the National Institutes of Health. Experimental protocols were 

approved by the Animal Care and Use Committee at the University of Arkansas for Medical 

Sciences.

2.2 Core Temperature and Locomotor Activity

Following appropriate anesthetization with inhaled isoflurane, the abdominal area of each 

mouse was shaved and sanitized with iodine swabs. A rostro-caudal cut approximately 1.5 

cm in length was made with skin scissors, providing access to the intraperitoneal cavity. A 

cylindrical glass-encapsulated radiotelemetry probe (model ER-4000 E-Mitter, Mini Mitter, 

Bend, OR, USA) was then inserted, and the incision was closed using absorbable 5–0 

chromic gut suture material. At least 7 days were imposed between surgery and 

experimental observation of drug effects to allow incisions to heal and mice to recover to 

normal body weights. Following surgery, implanted mice were individually housed in 

Plexiglas mouse cages (15.24 × 25.40 × 12.70 cm) for the duration of all temperature and 

locomotor activity experiments. Implanted transmitters produced activity- and temperature-

modulated signals that were transmitted to a receiver (model ER-4000 Receiver, Mini Mitter 

Co., Inc.) underneath each mouse cage. Receivers were housed in light- and sound-

attenuating cubicles (Med Associates model ENV-022MD, St. Albans, VT) equipped with 

exhaust fans, which further masked ambient laboratory noise. Temperature and locomotor 

activity data were collected simultaneously at regular 5-min intervals and processed by the 

Vital View data acquisition system (Mini Mitter Co., Inc.).

For dose-effect determinations, mice were weighed, marked, and returned to their individual 

cages during which at least 1 hr of baseline data were collected. Cannabinoid doses were 

then calculated and drugs prepared for injection. Animals were subsequently removed from 

their cage and injected with saline, or various doses of Δ9-THC, JWH-018 or JWH-073. 

Mice were placed into a new cage with fresh bedding to stimulate exploratory behavior, 

providing an elevated activity baseline from which a drug-induced suppression of locomotor 

activity could be characterized, then returned to the telemetry chambers for approximately 

24 hrs of data collection. Separate groups of mice (n=5) were tested at each dose condition 

for each compound.

To assess tolerance to hypothermic and locomotor effects, four groups of mice (n=5) were 

injected daily with either saline, 30 mg/kg Δ9-THC, 3 mg/kg JWH-018, or 10 mg/kg 

JWH-073 for 5 consecutive days, and data were collected continuously until 24 hrs after the 

last injection. After 5 days of data collection was completed, injections were suspended for 

14 days, then mice were retested with the same dose of the same cannabinoid to assess the 

persistence of tolerance. For studies involving cross-tolerance among Δ9-THC and the 

SCBs, mice were injected daily with 30 mg/kg Δ9-THC for 4 consecutive days, then tested 
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with either 3 mg/kg JWH-018 or 10 mg/kg JWH-073 on day 5, and again after 14 days of 

drug abstinence.

2.3 Membrane Preparation

Four groups of mice (n=6) were injected daily with drug vehicle (see section 2.6), 30 mg/kg 

Δ9-THC, 3 mg/kg JWH-018, or 10 mg/kg JWH-073 for 4 consecutive days. Twenty four 

hours after the last injection, mice were euthanized by cervical dislocation and decapitation. 

Whole brains were immediately removed and hypothalamus and cortex regions were hand 

dissected out on ice, then snap-frozen in liquid nitrogen and stored at −80°C. Thus, all in 

vitro studies were performed in brain homogenates at a drug state equivalent to that in mice 

used in tolerance studies just prior to the 5th consecutive cannabinoid injection (see section 

2.2).

To prepare membrane homogenates, brains were thawed on ice, pooled and suspended in 

ice-cold homogenization buffer (50 mM HEPES pH 7.4, 3 mM MgCl2, and 1 mM EGTA) 

(Prather et al., 2000). Suspended brain regions were then subjected to 10 complete strokes 

employing a 40 mL Dounce glass homogenizer, and centrifuged at 40,000 × g for 10 min at 

4°C. Supernatants were discarded and pellets were resuspended in ice cold homogenization 

buffer, homogenized and centrifuged similarly twice more. Following the final 

centrifugation step, pellets were resuspended in ice-cold 50 mM HEPES, pH 7.4, to a 

concentration of approximately 2 mg/mL and aliquoted for storage at −80°C. Protein 

concentration was determined using BCA™ Protein Assay (Thermo Scientific, Rockford, 

IL).

2.4 Competition Receptor Binding

Fifty µg of mouse hypothalamic or cortical membrane homogenates (containing a relatively 

pure source of CB1Rs) were incubated with 1.0 nM of the radiolabeled cannabinoid agonist 

[3H]CP-55,940 for 90 min at room temperature in an assay buffer containing 5 mM MgCl2, 

50 mM Tris, 0.05% bovine serum albumin (BSA). Assays were performed in triplicate, in a 

final volume of 1 mL, as previously described (Shoemaker et al., 2005). Total binding was 

defined as the amount of radioactivity observed when 1.0 nM [3H]CP-55,940 was incubated 

in tissues from vehicle-treated mice. Nonspecific binding was defined as the amount of 

[3H]CP-55,940 binding remaining in the presence of 1 µM of the non-radioactive CB1/

CB2R agonist WIN-55,212-2. Specific binding was calculated by subtracting non-specific 

from total binding. Reactions were terminated by rapid filtration through Whatman GF/B 

glass fiber filters, followed by five washes with an ice-cold buffer containing 50 mM Tris 

and 0.05% bovine serum albumin (BSA). Filters were punched out into 7 mL scintillation 

vials and immersed in 4 mL of ScintiVerse™ BD Cocktail scintillation fluid. After 

overnight extraction, bound radioactivity was determined by liquid scintillation 

spectrophotometry. Specific binding is expressed as a percentage of binding occurring in 

vehicle samples (e.g., binding in the absence of any competitor).

2.5 [35S]GTPγS Binding

[35S]GTPγS binding was performed as previously described (Liu and Prather, 2001), with 

minor modifications. JWH-018 (10 µM) was incubated with 25 µg of mouse hypothalamus 
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or cortical membrane homogenates, 10 µM GDP, 0.1 nM [35S]GTPγS and assay buffer (20 

mM HEPES, 10 mM MgCl2, 100 mM NaCl, 20 units/L adenosine deaminase, 0.05% BSA). 

Assays were performed in triplicate in a final volume of 1 mL for 30 min at 30°C. Total 

binding was defined as the amount of radioactivity observed when 0.1 nM [35S]GTPγS was 

incubated in membranes from vehicle-treated mice. Nonspecific binding was defined as the 

amount of [35S]GTPγS binding remaining in the presence of 10 µM of non-radioactive 

GTPγS. Specific binding was calculated by subtracting non-specific from total binding. 

Reactions were terminated by rapid filtration through Whatman GF/B glass fiber filters, 

followed by five washes with an ice-cold buffer containing 20 mM HEPES and 0.05% BSA. 

Filters were punched out into 7 mL scintillation vials and immersed in 4 mL of 

ScintiVerse™ BD Cocktail scintillation fluid. After overnight extraction, bound 

radioactivity was determined by liquid scintillation spectrophotometry. Specific binding is 

expressed as picomoles of [35S]GTPγS bound per mg of protein.

2.6 Drugs

All drugs used for in vitro assays were diluted to a stock concentration of 10−3 M with 100% 

ethanol and stored at −20°C. JWH-018 and JWH-073 were synthesized by Thomas 

Prisinzano, Ph.D. (University of Kansas, Lawrence, KS) and provided to the investigators 

free of charge. Δ9-THC was supplied by the National Institute on Drug Abuse (NIDA, 

Bethesda, MD). GTPγS and GDP used in the [35S]GTPγS assay were purchased from EMD 

Chemical (Gibbstown, NJ), and Sigma Aldrich (St. Louis, MO), respectively. Both 

chemicals were diluted to a stock concentration of 10−2 M with water and stored at −20°C. 

[3H]CP-55,940 (174.6 Ci/mmol) used for competition receptor binding was purchased from 

PerkinElmer (Waltham, MA) and [35S]GTPγS (1250 Ci/mmol) was purchased from 

American Radiolabeled Chemicals (St. Louis, MO). For in vivo studies, all drugs were 

dissolved to the appropriate concentrations in a ratio of 1:1:18 of absolute 

ethanol:emulphor:physiological saline vehicle and stored at 4°C until used. All drugs were 

administered intraperitoneally in mice.

2.7 Data Analysis

All data are presented as group means ± SEM. Points without error bars indicate that the 

variance is contained within the data point. For dose-effect determinations of effects on core 

body temperature, the lowest core temperature measured within 8 hours after injection was 

averaged across animals in a given dose condition, then compared by a Kruskal-Wallis one 

way analysis of variance (ANOVA) on ranks because data were not normally distributed. To 

determine significant differences in hypothermic responses elicited by 30 mg/kg Δ9-THC, 

3.0 mg/kg JWH-018 or 10.0 mg/kg JWH-073 after saline or 30.0 mg/kg Δ9-THC 

pretreatment, an ANOVA was conducted, then all groups were compared to the saline + Δ9-

THC using a Dunnett’s test. For single dose tolerance and cross tolerance studies, repeated 

measures one way ANOVAs were performed on the lowest temperatures achieved by each 

subject, as well as on the times at which core temperatures returned to pre-injection baseline 

(operationally defined as three consecutive readings ≥ 36°C.) Locomotor data were analyzed 

by summing all locomotor counts between 0 and 8 hrs after injection, calculating group 

means, then statistically comparing groups using one way repeated measures ANOVA. For 

consistency in statistical testing across in vivo studies, the Student-Newman-Keuls method 
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was always used to test all pairwise comparisons since this test can be conducted after 

ANOVA or repeated measures ANOVA, and is applicable to normally- and abnormally-

distributed data sets. All in vivo statistical calculations were performed using SigmaStat 3 

(Systat Software, Inc., San Jose, CA), and significance was judged at the level of p < 0.05.

Statistical analyses for ex vivo experiments were performed using GraphPad Prism version 

4.0b (GraphPad Software Inc., San Diego, CA). Data are expressed as mean ± S.E.M. A 

one-way ANOVA, followed by Tukey’s Multiple Comparison post-hoc Test, was used to 

determine statistical significance (P < 0.05) between three or more groups.

3. Results

3.1 Dose-effect determinations of hypothermic effects: apparent in vivo efficacy 
differences between Δ9-THC, JWH-018 and JWH-073

All three cannabinoids decreased core temperature in a dose-dependent manner, with a 

relative order of potency of JWH-018 > JWH-073 > Δ9-THC (Figure 2, left). For all 

compounds, peak hypothermic effects typically occurred within 60–75 minutes after 

injection. The overall ANOVA indicated a significant difference between median values 

(H=55.608, df=12, p<0.05), and significant pairwise comparisons were found within drug 

(between doses, see asterisks in Figure 2, left panel). Importantly, hypothermic effects of 

30.0 and 100.0 mg/kg Δ9-THC induced similar hypothermic effects (p>0.05), indicating a 

maximal effect had been reached, so no further doses were tested.

Significant differences were also detected in pairwise comparisons between drugs (within 

dose, see bullseyes in Figure 2, left panel). At 3.0 mg/kg, hypothermia elicited by JWH-018 

was significantly different from that induced by JWH-073 (q=6.563) and by Δ9-THC 

(q=6.793, p<0.05 for both comparisons), while hypothermic effects of JWH-073 were 

different from those elicited by Δ9-THC (q=5.560, p<0.05). At 10.0 mg/kg, there was no 

significant difference between hypothermic effects of JWH-018 and JWH-073 (p>0.05), but 

both JWH-018 (q=6.255) and JWH-073 (q=6.961) induced hypothermic effects which 

differed from those of Δ9-THC (p<0.05 for both comparisons.) At 30.0 mg/kg, again there 

was no significant difference between hypothermic effects of JWH-018 and JWH-073 

(p>0.05), but both JWH-018 (q=5.499) and JWH-073 (q=4.851) again induced hypothermic 

effects which differed from those of Δ9-THC (p<0.05 for both comparisons.) Importantly, 

the maximal hypothermic effects of both SCBs (observed at 3.0 and 10.0 mg/kg) were 

significantly different from the maximal hypothermic effects of Δ9-THC (observed at 30.0 

and 100.0 mg/kg). Therefore, maximally-effective hypothermic doses of 30.0 mg/kg Δ9-

THC, 3.0 mg/kg JWH-018 and 10.0 mg/kg JWH-073 were used for all subsequent studies 

on tolerance, cross-tolerance and receptor expression and function were conducted with 

these doses.

In blockade studies, mice pretreated with saline (Figure 2, right, open bars) all exhibited 

hypothermic effects when challenged 60 min later with either 30.0 mg/kg Δ9-THC (a 

maximally-effective dose), 3.0 mg/kg JWH-018 or 10.0 mg/kg JWH-073. Importantly, 

pretreatment with 30.0 mg/kg Δ9-THC (Figure 2, right, filled bars) significantly attenuated 

hypothermic effects of JWH-018 and JWH-073, but not those of Δ9-THC. After saline 
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pretreatment, 3.0 JWH-073 (q’=3.286) and 10.0 JWH-073 (q’=3.268, p<0.05 for both 

comparisons) induced significantly different hypothermic effects than 30.0 mg/kg Δ9-THC. 

However, after pretreatment with Δ9-THC, neither 3.0 mg/kg JWH-018 nor 10.0 mg/kg 

JWH-073 induced hypothermic effects which were different from those of 30.0 mg/kg Δ9-

THC.

3.2 Rapid and persistent tolerance to the hypothermic effects of Δ9-THC, JWH-018 and 
JWH-073

Handling, injection of saline, and placement into a new cage with fresh bedding elicited 

mild and relatively brief hyperthermic effects, which were consistently expressed throughout 

the treatment period (Figure 3, upper left). In contrast, the initial administration of all three 

cannabinoids elicited marked hypothermic effects (filled circles in Figure 3, upper right and 

both bottom panels), lasting between 3 and 8 hours, depending on the drug. Importantly, 

with daily administration, a progressive tolerance developed to hypothermic effects of all 

three cannabinoids. For repeated 30.0 mg/kg Δ9-THC administration (Figure 3, upper right), 

significant differences were found in the lowest temperature reached and the time required 

to return to pre-injection baseline temperature (χ2=28.095 and 21.714, respectively, df=5 

and p<0.05 for both tests.) The lowest temperature reached on day 5 was significantly 

different from that observed on day 1 (q=6.110), as was the time required for temperatures 

to return to pre-injection baseline (q=5.237, p<0.05 for both comparisons). Two weeks after 

the fifth Δ9-THC administration, the lowest temperature reached was significantly different 

from that observed on both day 1 (q=4.041) and day 5 (q=5.422, p<0.05 for both 

comparisons), as was the time required for temperatures to return to pre-injection baseline 

(q=2.887 for the comparison with day 1, q=4.906 for the comparison with day 5, p<0.05 for 

both comparisons). For repeated administration of 3.0 mg/kg JWH-018 (Figure 3, bottom 

left), significant differences were found in the lowest temperature reached and the time 

required to return to pre-injection baseline temperature (F=22.361 and χ2=18.529, df=5 and 

p<0.05 for both tests.) The lowest temperature reached on day 5 was significantly different 

from that observed on day 1 (q=12.256), as was the time required for temperatures to return 

to pre-injection baseline (q=4.781, p<0.05 for both comparisons). Two weeks after the fifth 

JWH-018 administration, the lowest temperature reached was significantly different from 

that observed on day 5 (q=8.887, p<0.05) but not from that observed on day 1 (p>0.05), 

although the time required for temperatures to return to pre-injection baseline was 

significantly different from that observed on both day 1 (q=3.795) and day 5 (q=3.960, 

p<0.05 for both comparisons). For repeated administration of 10.0 mg/kg JWH-073 (Figure 

3, bottom right), significant differences were found in the lowest temperature reached and 

the time required to return to pre-injection baseline temperature (F=9.810 and 13.588, df=5 

and p<0.05 for both tests.) The lowest temperature reached on day 5 was significantly 

different from that observed on day 1 (q=6.428), as was the time required for temperatures 

to return to pre-injection baseline (q=5.376, p<0.05 for both comparisons). Two weeks after 

the fifth JWH-073 administration, the lowest temperature reached was significantly different 

from that observed on day 5 (q=5.421, p<0.05) but not from that observed on day 1 

(p>0.05), although the time required for temperatures to return to pre-injection baseline was 

significantly different from that observed on both day 1 (q=2.176) and day 5 (q=7.552, 

p<0.05 for both comparisons).
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3.3 Lack of tolerance to hypolocomotion induced by Δ9-THC, JWH-018 and JWH-073

Handling, injection of saline, and placement into a new cage with fresh bedding elicited 

relatively high levels of motor activity and exploratory behavior during the first 8 hours of 

the baseline observation (“BSLN” point in all panels of Figure 4), one day prior to initiation 

of daily cannabinoid (or saline control) injections. For mice treated daily with saline across 

the treatment period, (Figure 4, upper left) no significant differences from the baseline level 

of motor activity were detected across the treatment period (χ2= 11.929, df=6, p>0.05). In 

contrast, the initial administration of all three cannabinoids elicited marked suppression of 

motor activity (Figure 4, upper right and both bottom panels), and no apparent tolerance to 

this effect developed across the chronic treatment period for any drug. For repeated 30.0 

mg/kg Δ9-THC administration (Figure 4, upper right), the overall ANOVA was significant 

(χ2=25.429, df=5, p<0.05) because every treatment day was significantly different from 

baseline trial (q=5.674, 5.669, 6.957, 8.165 and 5.680 for days 1–5, respectively, and 

q=3.464 for the trial after 2 week abstinence; p<0.05 for all comparisons.) For repeated 3.0 

mg/kg JWH-018 administration (Figure 4, bottom left), the overall ANOVA was significant 

(χ2=21.929, df=5, p<0.05) because every treatment day was significantly different from 

baseline trial (q=5.376, 8.083, 6.047, 6.532 and 5.422 for days 1–5, respectively, and 

q=5.674 for the trial after 2 week abstinence; p<0.05 for all comparisons.) For repeated 10.0 

mg/kg JWH-073 administration (Figure 4, bottom right), the overall ANOVA was 

significant (χ2=18.214, df=5, p<0.05) because every treatment day was significantly 

different from baseline trial (q=6.325, 5.422, 7.348, 5.237 and 8.083 for days 1–5, 

respectively, and q=5.480 for the trial after 2 week abstinence; p<0.05 for all comparisons.)

3.4 Cross-tolerance to hypothermic effects of SCBs in mice previously treated with Δ9-THC

As previously demonstrated (data replotted from Figure 3), Δ9-THC-naïve mice acutely 

administered 3.0 mg/kg JWH-018 or 10.0 mg/kg JWH-073 exhibited dramatic hypothermic 

effects which resolved within 3 to 5 hours (Figure 5, filled circles in top panels). In contrast, 

a profound attenuation of these hypothermic effects was observed in mice previously treated 

with 30.0 mg/kg Δ9-THC once per day for 4 consecutive days (Figure 5, grey squares in top 

panels) then tested with 3.0 mg/kg JWH-018 (F=87.905, df=2, p<0.05) or 10.0 mg/kg 

JWH-073 (F=41.345, df=2, p<0.05) on day 5. For Δ9-THC-treated mice tested with 3.0 

mg/kg JWH-018 (Figure 5, top left), the lowest temperature recorded was never below the 

species-typical range, and was significantly different from that observed in Δ9-THC-naïve 

mice (q=17.191, p<0.05). When these same mice were re-tested with 3.0 mg/kg JWH-018 

after a 14-day drug abstinence period, the lowest temperature recorded remained 

significantly different from that observed in Δ9-THC-naïve mice (q=15.081, p<0.05), but 

was not different from that observed during the initial cross-tolerance test (p>0.05). 

Similarly, for Δ9-THC-treated mice tested with 10.0 mg/kg JWH-073 (Figure 5, top right), 

the lowest temperature recorded was never below the species-typical range, and was 

significantly different from that observed in Δ9-THC-naïve mice (q=12.801, p<0.05). When 

these same mice were re-tested with 10.0 mg/kg JWH-073 after a 14-day drug abstinence 

period, the lowest temperature recorded remained significantly different from that observed 

in Δ9-THC-naïve mice (q=5.332, p<0.05), and was also different from that observed during 

the initial cross-tolerance test (q= 7.469, p<0.05).
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3.5 Lack of cross-tolerance to hypolocomotor effects of SCBs in mice previously treated 
with Δ9-THC

As previously demonstrated, Δ9-THC-naïve mice acutely administered 3.0 mg/kg JWH-018 

or 10.0 mg/kg JWH-073 exhibited profound suppression of locomotor activity during the 8 

hour post-injection period (Figure 5, bottom panels). Consistent with the previous findings 

of no tolerance to hypolocomotor effects, mice tested with either of the SCBs exhibited 

suppressed locomotor behavior relative to the baseline observation, regardless of Δ9-THC 

treatment history. For mice tested with 3.0 mg/kg JWH-018 (Figure 5, bottom left), motor 

activity was significantly different from that observed under the baseline condition in Δ9-

THC-naïve animals (q=7.682), in animals with a Δ9-THC history (q=8.824), and in these 

same animals when re-tested with 3.0 mg/kg JWH-018 after a 14-day drug abstinence period 

(q=6.215, p<0.05 for all comparisons.) No other between-group comparisons were 

statistically-significant (p>0.05 for all comparisons). Similarly, for mice tested with 10.0 

mg/kg JWH-073 (Figure 5, bottom right), motor activity was significantly different from 

that observed under the baseline condition in Δ9-THC-naïve animals (q=10.175), in animals 

with a Δ9-THC history (q=10.513), and in these same animals when re-tested with 10.0 

mg/kg JWH-073 after a 14-day drug abstinence period (q=10.187, p<0.05 for all 

comparisons.) No other between-group comparisons were statistically-significant (p>0.05 

for all comparisons).

3.6 Downregulation of CB1Rs in the hypothalamus but not the cortex after repeated CB 
treatment

To provide a mechanistic framework for behavioral findings, complementary ex vivo studies 

evaluating changes in CB1R expression (Figure 6) and function (Figure 7) in select brain 

regions were performed. Mice were treated for 4 days with either vehicle, Δ9-THC (30 mg/

kg), JWH-073 (10 mg/kg) or JWH-018 (3 mg/kg). One day after the last dose, brains were 

harvested, dissected into discrete regions, and membrane homogenates prepared to examine 

CB1R receptor binding (Figure 6). To estimate CB1R density, specific binding of the CB1R 

radioligand [3H]CP-55,940 (1nM) was determined in hypothalamic (Figure 6A) and cortical 

(Figure 6B) membranes. CB1Rs in hypothalami from untreated mice bound 1151 ± 45 

fmole/mg of [3H]CP-55,940. Consistent with CB1R downregulation, CB1Rs in hypothalami 

obtained from mice treated for 4 days with either Δ9-THC, JWH-073 or JWH-018 bound 

significantly less [3H]CP-55,940 (Figure 6A; p>0.05). In contrast, CB1R binding levels in 

mouse cortex homogenates did not change significantly from vehicle regardless of 

cannabinoid pretreatment (Figure 6B). These results indicate that CB1R downregulation 

does occur and it transpires in a region-specific manner.

3.7 Desensitization of CB1Rs in the hypothamlamus but not the cortex after repeated CB 
treatment

To determine the effects of repeated cannabinoid exposure on G-protein activation by 

CB1Rs, the [35S]GTPγS binding assay was employed (Figure 7). The capacity of a receptor 

saturating concentration of the full CB1R agonist JWH-018 (10 µM) to activate G-proteins 

was evaluated in hypothalamic (Figure 7A) and cortical (Figure 7B) membranes of 

chronically treated mice. Indicative of G-protein activation, JWH-018 produced a 51.8 ± 
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6.5% increase in binding of [35S]GTPγS to G-proteins in hypothalami from drug naïve mice. 

In contrast, JWH-018 produced less G-protein activation in hypothalami isolated from mice 

chronically treated with Δ9-THC or JWH-073, consistent with receptor desensitization 

(Figure 7A). Importantly, treatment of mice with Δ9-THC or JWH-073 did not desensitize 

CB1Rs in striatal membranes (Figure 7B), indicating that the adaptive changes produced by 

chronic treatment with phytocannabinoids or synthetic cannabinoids occur in a brain region 

specific manner. G-protein activation produced by JWH-018 (100 nM) in both brain regions 

was CB1R-dependent because it was completely blocked by co-incubation with the neutral 

CB1R antagonist O-2050 (1 µM, data not shown). Collectively, ex vivo receptor binding and 

functional data suggest that chronic treatment of mice with cannabinoids produces brain 

region-specific CB1R downregulation and desensitization.

4. Discussion

In these studies, complementary in vivo and ex vivo assays were used to compare the effects 

of repeated exposure to the low efficacy phytocannabinoid Δ9-THC and two high efficacy 

SCB drugs of abuse, JWH-018 and JWH-073. Initially, dose effect curves for hypothermic 

effects were generated after acute exposure to various doses of each drug in mice. Not 

surprisingly, all three cannabinoids produced dose-dependent hypothermic responses, 

similar to those previously reported for various CB1R agonists (e.g., CP-55,940 and WIN 

55,212-2) (Pertwee et al., 1993). Consistent with partial CB1 agonist effects, Δ9-THC-

induced hypothermia plateaued at 30 mg/kg, and 100 mg/kg Δ9-THC did not produce a 

greater response. In contrast, doses of JWH-018 and JWH-073 induced more extreme 

hypothermic effects than were ever observed with Δ9-THC, which is consistent with their 

relatively higher CB1 efficacy, as has been previously demonstrated ex vivo (Brents et al., 

2011; Brents et al., 2012). In addition, pretreatment with the low efficacy agonist Δ9-THC 

attenuated the hypothermic effects induced by subsequent administration of either higher 

efficacy SCB. Thus, congruent with previous work in other mouse strains (McMahon and 

Koek, 2007; Paronis et al., 2012), Δ9-THC exhibited characteristics of a partial agonist when 

administered alone, and when co-administered with a full agonist. Our present in vivo 

findings therefore replicate similar studies from other laboratories, and recapitulate the ex 

vivo profiles of Δ9-THC and the SCBs from our own previous experiments (Brents et al., 

2011; Brents et al., 2012).

Next, we sought to extend these in vivo profiles by assessing the development of tolerance 

and cross-tolerance to hypothermic and locomotor suppressant effects, two endpoints of the 

classical cannabinoid tetrad (i.e., Compton et al., 1992). Use of radiotelemetry probes 

allowed the simultaneous recording of core body temperature and locomotor activity in all 

subjects in order to assess tolerance to these two drug effects following repeated 

administration of low efficacy Δ9-THC or high efficacy SCBs, but the role of intrinsic 

efficacy in tolerance and cross-tolerance among the cannabinoids is underdeveloped and the 

data in this domain are often contradictory. For example, an early study demonstrated that 

mice repeatedly treated with Δ9-THC (20 mg/kg, once a day for 2 days) showed a 6-fold 

tolerance to the hypothermic effects of subsequent Δ9-THC, and a similar degree of 

tolerance (approximately 5-fold) was observed for the hypothermic effects of high efficacy 

cannabinoids CP-55,940 and WIN 55,212-2 (Pertwee et al., 1993). However, a different 
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regimen of Δ9-THC (10 mg/kg, twice per day for 6 days) resulted in approximately 10-fold 

shifts in subsequent Δ9-THC dose effect curves for motor activity, hypothermia and 

antinociception in mice, but only moderate tolerance was apparent when high efficacy 

cannabinoids CP-55,940 or WIN 55,212-2 were tested, and only to some of these effects 

(Fan et al., 1994). Finally, and most relevant to the present study, Δ9-THC treatment (1 

mg/kg, every day for 3 days) decreased sensitivity to the discriminative stimulus effects of 

Δ9-THC 3-fold, but did not alter the Δ9-THC-like interoceptive effects of high efficacy 

cannabinoids CP-55,940, JWH-073, or JWH-018 in rhesus monkeys, although prolonged 

Δ9-THC treatment reduced sensitivity to the Δ9-THC-like discriminative stimulus effects of 

all cannabinoids (Hruba et al., 2012). Importantly, the tolerance observed to the effects of 

high efficacy compounds was approximately 50% less than that observed for Δ9-THC itself 

(Hruba et al., 2012).

In the present study, cannabinoid efficacy did not appear to dramatically affect the 

development of tolerance to hypothermic effects. Whether mice were chronically treated 

with low efficacy Δ9-THC or with high efficacy JWH-018 or JWH-073, tolerance developed 

within 5 days of regular treatment and was still evident 2 weeks after the last cannabinoid 

injection. Previous reports show tolerance to Δ9-THC-induced hypothermia develops 

rapidly, and is often observed as early as the second treatment (Pertwee et al., 1993). In 

addition, McMahon and colleagues reported that tolerance to cannabinoid-induced 

hypothermia was still present 9 days after last treatment (Singh et al., 2011). Interestingly, 

tolerance does not develop to all cannabinoid effects. Here we demonstrated dramatic 

tolerance to hypothermic effects in the very same animals in which locomotor activity 

remained profoundly suppressed throughout the study. This finding is not necessarily 

consistent with previous studies, in which tolerance to locomotor suppressant effects is often 

observed. For instance, 14 days of continuous exposure to the synthetic Δ9-THC analogue 

HU-210 (3-(1,1’-dimethylheptyl)-6aR,7,10, 10aR-tetrahydro-1-hydroxy-6,6-dimethyl-6H-

dibenzo[b,d]pyran-9-methanol) resulted in clear tolerance to hypomotility in the rat 

(Caberlotto et al., 2004). It may be the case that tolerance to hypomotility develops at a 

slower rate than tolerance to hypothermia, in which case a longer treatment period than the 

one presently employed may be required to observe this effect. Another possibility is that 

our method of measuring activity using radiotelemetry probes in a home cage setting may be 

less sensitive than other devices that measure motor activity. Using our system, baseline 

activity levels are extremely low, and in order to observe dose-related suppression of motor 

activity we must place our subjects in new cages with fresh bedding immediately after 

injection. This stimulates exploratory behavior in control subjects, which is reliably 

suppressed by cannabinoid administration. The phenomenon of locomotor sensitization is 

often conceptualized as “reverse tolerance”, and the arousal state of an animal is an 

important determinant of locomotor sensitization (Martin-Iverson et al., 1988). Similarly, 

environmental novelty can also dramatically modulate locomotor sensitization, minimizing 

its expression in environments similar to the home cage, and maximizing its expression in 

environments distinct from the home cage (Badiani et al., 1995). We are not aware of 

studies directly testing whether these same relationships also apply to tolerance to locomotor 

effects, but assessment of acute and chronic drug effects on locomotor activity within a 
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home cage environment is certainly likely to differ from similar experiments using 

environmentally distinct and novel activity chambers.

Much of our understanding of tolerance and cross-tolerance has been achieved by 

investigating these effects among opioids, where it has been determined that there is an 

inverse relationship between intrinsic efficacy and tolerance / cross-tolerance. For example, 

using an assay of morphine discrimination in rats, Young and colleagues (1991) found that a 

regimen of twice-daily treatment with morphine increased the ED50 for high efficacy 

opioids etorphine, methadone and buprenorphine by only 2- to 4-fold, while inducing an 

apparently insurmountable tolerance to the morphine-like interoceptive effects of the low 

efficacy opioid nalbuphine. In squirrel monkeys, daily morphine treatment shifted the dose 

effect curve for the rate-decreasing effects of morphine, but produced significantly smaller 

shifts in the dose effect curves for higher efficacy opioids such as etorphine, l-methadone, 

and sufentanil (Hughes et al., 1995). Similarly, daily administration of morphine in an assay 

of schedule-controlled responding in rats shifted the morphine dose-effect curve to the right, 

but produced a 3-fold larger shift in the dose-effect curve for the low efficacy opioid 

butorphanol (Hughes et al., 1995). Subsequent work (Smith and Picker, 1998) demonstrated 

that tolerance to rate-decreasing effects induced by repeated butorphanol treatments were 

surmounted by administration of high efficacy opioids fentanyl and sufentanil in the rat. The 

role of intrinsic efficacy in tolerance to the analgesic effects of opioids has also been 

investigated, and rats made tolerant to analgesic effects of morphine or fentanyl (as 

evidenced by shifts in their respective dose effect functions) were completely insensitive to 

analgesic effects of the low efficacy opioids buprenorphine, levorphanol and meperidine 

(Paronis and Holtzman, 1992). This same pattern of effects has also been observed with 

regard to respiratory depressant effects of opioids in mice, where tolerance to respiratory 

depression induced by implantation of subcutaneous morphine pellets was overcome by 

subsequent intracerebroventricular administration of high efficacy opioids etorphine and 

heroin (Roerig et al., 1987).

However, among the cannabinoids used in the present study, high efficacy agonists 

JWH-018 and JWH-073 were unable to induce hypothermia in mice previously made 

tolerant to hypothermic effects of low efficacy Δ9-THC, suggesting that cross-tolerance 

developed to the hypothermic effects of the high efficacy SCBs, despite the relatively large 

disparity in intrinsic activity. In other words, unlike what is typically observed with opioids, 

tolerance to an effect induced by low efficacy Δ9-THC was not surmounted by 

administration of either high efficacy SCB. Furthermore, cross-tolerance was still present 14 

days after Δ9-THC cessation, suggesting that this cross-tolerance may be as persistent as the 

tolerance induced by repeated administration of the high efficacy SCBs themselves. In 

contrast, since tolerance to cannabinoid-induced hypomotility did not occur with repeated 

administration of any of the three drugs utilized in these experiments, it was not surprising 

that there was no cross-tolerance to hypomotility when JWH-018 and JWH-073 were 

administered after repeated Δ9-THC. Thus, our present work suggests that cross-tolerance 

does occur among cannabinoid agonists of differing efficacy; however, previous studies 

have demonstrated that the degree of cross-tolerance observed is often variable across 

different endpoints. In non-human primates, chronic Δ9-THC (1 mg/kg, every 12 hours) 

elicited marked tolerance (23- and 160-fold) to the effects of subsequent Δ9-THC on 
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schedule-controlled responding, but induced lesser cross-tolerance (approximately 10-fold) 

to the effects of the full CB1 agonists CP-55,940 and WIN 55,212-2 on these same 

endpoints; however, while this regimen of Δ9-THC treatment reduced sensitivity to the 

discriminative stimulus effects of subsequent Δ9-THC, no cross-tolerance to these effects 

was observed when CP-55,940 and WIN 55,212-2 were tested (McMahon, 2011). In 

subsequent experiments in the mouse, chronic Δ9-THC treatment (32 mg/kg/day) resulted in 

tolerance to rate-decreasing and hypothermic effects of subsequent Δ9-THC, but cross-

tolerance to CP-55,940 was only observed for hypothermic effects (Singh et al., 2011). 

McMahon (2011) has proposed that cannabinoid agonist efficacy has an inverse relationship 

with tolerance and cross-tolerance, similar to what is observed in the opioid system, 

although our present results fail to support that notion. Further investigation will be required 

to determine whether these disparate results are due to differences in dosing regimens, 

species-specific factors, pharmacokinetic variables, or the drugs themselves and how they 

may differ in their interactions with cannabinoid and non-cannabinoid binding sites.

In this regard, to begin to understand the mechanisms behind our present findings, ex vivo 

CB1R binding and functional studies were also carried out in homogenates from discrete 

brain regions of mice chronically treated with Δ9-THC or the high efficacy SCBs. It has 

been previously demonstrated that adaptive cellular events including downregulation and 

desensitization of CB1Rs mediate tolerance to cannabinoid effects (Sim-Selley, 2003); 

therefore, our studies incorporated both competition receptor binding and [35S]GTPγS 

binding experiments to measure CB1R density and function, respectively. Repeated 

cannabinoid exposure induced a dramatic downregulation of CB1R expression in the 

hypothalamus, which is a critical brain region for thermoregulation. This reduction in CB1R 

availability in the hypothalamus may explain the profound tolerance presently observed to 

hypothermic effects of repeated cannabinoid administration. In contrast, CB1R expression in 

the cortex was not altered by repeated cannabinoid exposure, which may partially explain 

the lack of tolerance to hypomotility observed in mice. These observations are consistent 

with previous studies in humans demonstrating that prolonged marijuana exposure results in 

region-specific downregulation of central CB1Rs (Hirvonen et al., 2011). Since CB1R 

expression was profoundly reduced in the hypothalamus but not in the cortex, the function 

of remaining CB1Rs in these brain regions was further examined by agonist activation of G-

proteins. As predicted by previous studies (Rinaldi-Carmona et al., 1998; Sim-Selley, 2003), 

CB1R-mediated G-protein activation was greatly desensitized by repeated cannabinoid 

exposure. Interestingly, the extent of CB1R downregulation and desensitization observed in 

the hypothalamus were not related to the efficacy of the cannabinoid used to induce these 

effects. Indeed, the effects of repeated Δ9-THC on CB1R expression and function were at 

least as pronounced as those of repeated exposure to the two high efficacy SCBs. Further 

mechanistic studies will be required to more fully understand the biochemical basis of CB1R 

downregulation and desensitization, but recent evidence suggests an important role for p-

arrestin2 (Imperatore et al., 2015)

5. Conclusion

Finally, although the role of tolerance in drug abuse is incompletely understood, it is 

supposed that tolerant users may escalate drug dose to overcome reduced effectiveness of 
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the drug of abuse. In the case of SCBs, use of these compounds is associated with significant 

toxicity (e.g., Fantegrossi et al., 2014), although the mechanisms for these adverse effects 

are still unclear. Nevertheless, regardless of mechanism, tolerance to drug effects might be 

expected to lead to increased drug exposure as users escalate their doses, thus also 

increasing their risk for serious adverse effects. Given that most college students who abuse 

SCBs also report use of marijuana (Hu et al., 2011; Vandrey et al, 2012), cross tolerance of 

the sort described in these studies may also be a critical factor in mediating dose selection of 

these emerging drugs of abuse. As abuse of these high efficacy SCBs continues, a thorough 

understanding of the acute and chronic effects of these substances is critical in order to 

inform both drug policy and clinical management of users who present with symptoms of 

SCB-induced toxicity.
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Abbreviations

AM-2201 [1-(5-fluoropentyl)-1H-indol-3-yl]-1-naphthalenyl-methanone

CB1Rs Cannabinoid type 1 receptors

CP-47,497 rel-2-[(1S,3R)-3-hydroxycyclohexyl]-5-(2-methylnonan-2-yl)phenol

CP-55,940 5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-

hydroxypropyl)cyclohexyl]phenol

[35S]GTP8S guanosine-5’-O-(3-[35S]thio)triphosphate

HU-210 (1,1-dimethylheptyl-11-hydroxytetrahydrocannabinol)

JWH-018 (1-pentyl-3-(1-naphthoyl)indole)

JWH-073 (1-butyl-3-(1-naphthoyl)indole)

Δ9-THC Δ9-tetrahydrocannabinol

WIN-55,212-2 [(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-

de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone
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Fig. 1. 
Structures of Δ9-THC (left) and the aminoalkylindole cannabinoids JWH-018 and JWH-073 

(right).
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Fig. 2. 
Left panel: Maximal hypothermic effects following Δ9-THC, JWH-018 or JWH-073 in mice 

(n=5 per drug, per dose). Abscissa: dose of drug, in mg/kg, expressed on a log scale. 

Ordinate: lowest core temperature achieved, in °C, as measured via radiotelemetry. Absence 

of error bars indicates an instance where the variability is contained within the point. 

Asterisks indicate significant differences from lower doses, within drug. Hash marks 

indicate significant differences from JWH-073, within dose. Bullseyes indicate significant 

differences from Δ9-THC, within dose. Right panel: Maximal hypothermic effects of 30 

mg/kg Δ9-THC, 3 mg/kg JWH-018 or 10 mg/kg JWH-073 in mice (n=5 per group) 

pretreated with saline (white) or 30 mg/kg Δ9-THC (black) 60 min prior. Asterisks indicate 

significantly different values from the saline+Δ9-THC group.
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Fig. 3. 
Effects of daily administration of saline (upper left), 30 mg/kg Δ9-THC (upper right), 3 

mg/kg JWH-018 (bottom left) or 10 mg/kg JWH-073 (bottom right) on core temperature in 

mice (n=5 per group). Only data from days 1 (black circles) and 5 (grey squares), and after 

14 days of cannabinoid abstinence (inverted triangles) are shown. Abscissa: time after drug 

injection, in minutes. Ordinate: core temperature, in °C, as measured via radiotelemetry. 

Absence of error bars indicates an instance where the variability is contained within the 

point. For statistical comparisons, please see section 3.2.
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Fig. 4. 
Effects of daily administration of saline (upper left), 30.0 mg/kg Δ9-THC (upper right), 3.0 

mg/kg JWH-018 (bottom left) or 10.0 mg/kg JWH-073 (bottom right) on locomotor activity 

in mice (n = 6 per group). Data from all 5 days of injection are presented (black circles), 

along with a vehicle injection control point (open square) and a point obtained after 14 days 

of cannabinoid abstinence (open circle.) Abscissa: injection condition. Ordinate: mean total 

activity counts for 8 hours after injection, as measured via radiotelemetry. Absence of error 

bars indicates an instance where the variability is contained within the point. Asterisks 

indicate significant differences from baseline.
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Fig. 5. 
Top - Effects of acute administration of 3.0 mg/kg JWH-018 (left) or 10.0 mg/kg JWH-073 

(right) on core temperature in mice (n = 5 or 6), as a function of Δ9-THC history. Black 

circles represent hypothermia elicited by the SCBs in previously drug-naïve mice, while 

grey squares depict the analogous data obtained from mice previously treated with Δ9-THC 

(see section 2.2) Inverted triangles illustrate the thermoregulatory effects of a second 

injection of 3.0 mg/kg JWH-018 (left) or 10.0 mg/kg JWH-073 (right) in mice previously 

treated with Δ9-THC after 14 days of cannabinoid abstinence. All other graph properties as 

described in Figure 3. Please see section 3.4 and 3.5 for statistical comparisons. Bottom - 

Effects of acute administration of 3.0 mg/kg JWH-018 (left) or 10.0 mg/kg JWH-073 (right) 

on locomotor activity in mice (n = 6), as a function of Δ9-THC history. Bars represent mean 

total activity quantified for 8 hours after injection. Asterisks indicate significant differences 

from baseline observations.
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Fig. 6. 
Region-specific downregulation of CB1Rs in mouse hypothalamus (top), but not cortex 

(bottom), following administration of vehicle (black), 30 mg/kg Δ9-THC (white), 10 mg/kg 

JWH-073 (striped) or 3 mg/kg JWH-018 (grey) in mice (n = 4 per group), once per day for 4 

days. Values designated with different letters above the error bars are significantly different 

(P<0.05, one-way ANOVA followed by a Tukey’s post-hoc test, mean ± SEM).
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Fig. 7. 
Desensitization of CB1Rs in mouse hypothalamus (top), but not cortex (bottom), when 

stimulated with a receptor-saturating concentration (10 µM) of JWH-018. Prior to tissue 

harvesting, mice (n = 4 per group) were treated with vehicle (black), 30 mg/kg Δ9-THC 

(white) or 10 mg/kg JWH-073 (striped), once per day for 4 days. Values designated with 

different letters above the error bars are significantly different (P<0.05, one-way ANOVA 

followed by a Tukey’s post-hoc test, mean ± SEM).
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