48 research outputs found

    Using L1 Culture to Acquire L2 Culture: ZPD framework

    Get PDF
    Teaching the target language culture has been recently receiving much attention and focus in the fields of second/foreign language teaching. This paper examines the importance of using the learners’ L1 culture as a tool to teach the target language culture. In addition, the paper stresses the idea that the learners develop a dynamic, hybrid identity and space that represents both their L1 and L2 culture. These manifestations are presented in a profound framework that shows the development stages that the learners go through in developing their third spaces by using their L1 culture. This paper includes four main sections: an introduction, a literature review, a proposed framework and best practices. It also contains interviews with teachers reflecting on their experiences in teaching culture in the classroom in Saudi Arabia. Finally, examples of my personal experiences in the third space dimension are presented in the paper

    Emotion detection using physiological signals EEG & ECG

    Get PDF
    Emotion modeling and identification has attracted substantial interest from disciplines including computer science, cognitive science and psychology. Despite the fact that a lot of qualitative studies have been carried out on emotion, less investigated aspects include the quantifying of physiological signals. This paper presents two physiological signals which are ECG and EEG and shows analysis of its emotional properties. A solution based on the short Fourier transform is proposed for the recognition of dynamically developing emotion patterns on ECG and EEG. Features extraction that are used in this paper are Kernel Density Estimation known as (KDE) and Mel-frequency cepstral coefficients known as MFCC. The classifier that is used in this work is Multi-layer Perceptron known as MLP, classification features are based on the valence and arousal. The experimental setup presented in this work for the elicitation of emotions is based on passive valence /arousal. The results shows that the ECG signal has direct relationship with the arousal factor rather than the valence factor. Also, EEG signal using 19 channels reported high accuracy results for determining emotions

    Impact Dynamics of Nonlinear Materials: FE Analysis

    Get PDF
    The paper presents an experimentally validated 3D finite element modelling impacts of viscoelastic and natural materials. It considers, in particular, the material set of ash wood and rubber in the context of the impact between the bat (the “hurley” made of ash wood) and the ball (the “sliotar” made of polyurethane-cork composite) in the Irish game of hurling. The hurley is highly anisotropic in its mechanical properties and this impact system therefore presents a unique modelling challenge. The FE models do not rely on either the assumption of linear materials models or on calibrated materials models. The FE models are able to take all three geometric, status and material nonlinearities into account yielding a close correlation with real-world impact scenario. The reported FE results were validated against experimental measurements showing an excellent correlation of more than 91% in term of maximum ball deformation

    Microbial Load of Chicken Shawerma and the Handlers’ Compliance with Food Safety Practices in Jordan

    Get PDF
    Background: Shawerma is a popular traditional food in the Eastern Mediterranean region. Aim: The aim of this study was to assess the shawerma handlers’ compliance with food safety practices and determine the microbial load and pathogenic organisms in the ready-to-eat chicken shawerma sandwiches in the restaurants of Amman, Jordan. Methods: This cross-sectional study used mixed methods including observational checklists to determine the compliance of food safety practices by 120 chicken shawerma handlers from 40 randomly selected restaurants in Amman. Additionally, pathogenic microorganisms were assessed by laboratory analysis in the ready-to-eat chicken shawerma sandwiches. Results: Only 2.5% and 10% complied, respectively, with separating knives and boards used for chicken from the ones used for vegetables. The compliance for maintaining proper temperatures for freezers and chillers were only 62% and 67%, respectively. As for hand-washing techniques and using disposable drying papers, the adherence was 5% and 7.5%, respectively. Laboratory analysis showed that 27.5% of the ready-to-eat shawerma had unacceptable levels of microorganisms. Conclusion: Our findings showed poor compliance of food safety practices in chicken shawerma restaurants of Amman. There is a need for capacity building and periodic evaluations of food handlers’ knowledge and practices within a comprehensive food safety program, carried out by qualified trainers. Keywords: chicken shawerma, food safety, Jorda

    The Effect of Spinal Manipulation on the Electrophysiological and Metabolic Properties of the Tibialis Anterior Muscle

    Get PDF
    There is growing evidence showing that spinal manipulation increases muscle strength in healthy individuals as well as in people with some musculoskeletal and neurological disorders. However, the underlying mechanism by which spinal manipulation changes muscle strength is less clear. This study aimed to assess the effects of a single spinal manipulation session on the electrophysiological and metabolic properties of the tibialis anterior (TA) muscle. Maximum voluntary contractions (MVC) of the ankle dorsiflexors, high-density electromyography (HDsEMG), intramuscular EMG, and near-infrared spectroscopy (NIRS) were recorded from the TA muscle in 25 participants with low level recurring spinal dysfunction using a randomized controlled crossover design. The following outcomes: motor unit discharge rate (MUDR), strength (force at MVC), muscle conduction velocity (CV), relative changes in oxy- and deoxyhemoglobin were assessed pre and post a spinal manipulation intervention and passive movement control. Repeated measures ANOVA was used to assess within and between-group differences. Following the spinal manipulation intervention, there was a significant increase in MVC (p = 0.02; avg 18.87 ± 28.35%) and a significant increase in CV in both the isometric steady-state (10% of MVC) contractions (p < 0.01; avg 22.11 ± 11.69%) and during the isometric ramp (10% of MVC) contractions (p < 0.01; avg 4.52 ± 4.58%) compared to the control intervention. There were no other significant findings. The observed TA strength and CV increase, without changes in MUDR, suggests that the strength changes observed following spinal manipulation are, in part, due to increased recruitment of larger, higher threshold motor units. Further research needs to investigate the longer term and potential functional effects of spinal manipulation in various patients who may benefit from improved muscle function and greater motor unit recruitment

    An innovative fractal monopole MIMO antenna for modern 5G applications

    Get PDF
    Proposed in this paper is the design of an innovative and compact antenna array which based on four radiating elements for multi-input multi-output (MIMO) antenna applications used in 5G communication systems. The radiating elements are fractal curves excited using an open-circuited feedline through a coplanar waveguide (CPW). The feedline is electromagnetically coupled to the inside edge of the radiating element. The array's impedance bandwidth is enhanced by inserting a ground structure composed of low-high-low impedance between the radiating elements. The low-impedance section of the ground is a staircase structure that is inclined at an angle to follow the input feedline. This inter-radiating element essentially suppresses near-field radiation between adjacent radiators. A band reject filter based on a composite right/left hand (CRLH) structure is mounted at the back side of the antenna array to reduce mutual coupling between the antenna elements by choking surface wave propagations that can otherwise degrade the radiation performance of the array antenna. The CRLH structure is based on the Hilbert fractal geometry, and it was designed to act like a stop band filter over the desired frequency bands. The proposed antenna array was fabricated and tested. It covers the frequency bands in the range from 2 to 3 GHz, 3.4-3.9 GHz, and 4.4-5.2 GHz. The array has a maximum gain of 6. 2dBi at 3.8 GHz and coupling isolation better than 20 dB. The envelope correlation coefficient of the antenna array is within the acceptable limit. There is good agreement between the simulated and measured results.Dr. Mohammad Alibakhshikenari acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 801538. Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2022)

    Codon Usage Is Influenced by Compositional Constraints in Genes Associated With Dementia

    Get PDF
    Dementia is a clinical syndrome characterized by progressive cognitive decline, and the symptoms could be gradual, persistent, and progressive. In the present study, we investigated 47 genes that have been linked to dementia. Compositional, selectional, and mutational forces were seen to be involved. The influence of these two compositional constraints on codon usage bias (CUB) was positive for nucleotide A and negative for GC. Nucleotide A also experienced the highest mutational force, and GC-ending codons were preferred over AT-ending codons. A high bias towards GC-ending codons enhanced the gene expression level, evidenced by the positive association between CAI and GC-ending codons. The unusual behavior of TTG codon showing an inverse relationship with GC-ending codon and negative influence of gene expression, a behavior contrary to all other GC-ending codons, shows operative selectional force. Furthermore, parity analysis, higher translational selection value, preference of GC-ending codons over AT-ending codons, and the association of gene length with gene expression refer to the dominant role of selection pressure with compositional constraint and mutational force shaping codon usage

    A study on microbial self-healing concrete using expanded perlite

    Get PDF
    The increasing concern for the safety and sustainability of structures is calling for the development of smart self-healing materials and preventive repair methods. This research is carried out to investigate the extent of self-healing in normal-strength concrete by using Sporosarcina aquimarina – NCCP-2716 immobilized in expanded perlite (EP) as the carrier. The efficacy of crack-healing was also tested using two alternative self-healing techniques, i.e. expanded perlite (EP) concrete and direct introduction of bacteria in concrete. A bacterial solution was embedded in EP and calcium lactate pentahydrate was added as the nutrient. Experiments revealed that specimens containing EP-immobilized bacteria had the most effective crack-healing. After 28 days of healing, the values of completely healed crack widths were up to 0.78 mm, which is higher than the 0.5 mm value for specimens with the direct addition of bacteria. The specimen showed a significant self-healing phenomenon caused by substantial calcite precipitation by bacteria. The induced cracks were observed to be repaired autonomously by the calcite produced by the bacteria without any adverse effect on strength. The results of this research could provide a scientific foundation for the use of expanded perlite as a novel microbe carrier and Sporosarcina aquimarina as a potential microbe in bacteria-based self-healing concrete

    Prospective assessment of inter-rater reliability of a neonatal adverse event severity scale

    Get PDF
    Introduction: To ensure the quality of clinical trial safety data, universal data standards are required. In 2019 the International Neonatal Consortium (INC) published a neonatal adverse event severity scale (NAESS) to standardize the reporting of adverse event (AE) severity. In this study the reliability of AE severity grading with INC NAESS was prospectively assessed in a real-world setting. Methods: Severity of AEs was assessed by two independent observers at each of four centers across the world. In each center two series of 30 neonatal adverse events were assessed by both observers: in a first phase with a generic (Common Terminology Criteria for Adverse Events, CTCAE) severity scale not specific to neonates, and in a second phase with INC NAESS (after a structured training). Intraclass correlation coefficients (ICC) were calculated to express inter-rater agreement in both phases, and bootstrap sampling was used to compare them. Results: 120 AEs were included in each of both phases. The ICC with the use of INC NAESS in phase 2 was 0.69. This represents a significant but modest improvement in comparison to the initial ICC of 0.66 in phase 1 (confidence interval of ratio of ICC in phase 2 to phase 1 = 1.005–1.146; excludes 1). The ICC was higher for those AEs for which a diagnosis specific AE severity table was available in INC NAESS (ICC 0.80). Discussion: Good inter-rater reliability of the INC NAESS was demonstrated in four neonatal intensive care units (NICUs) across the globe. The ICC is comparable to what is reported for scales with similar purposes in different populations. There is a modest, but significant, improvement in inter-rater agreement in comparison to the naïve phase without INC NAESS. The better performance when reviewers use AE-specific NAESS tables highlights the need to expand the number of AEs that are covered by specific criteria in the current version of INC NAESS.</p

    An innovative fractal monopole MIMO antenna for modern 5G applications

    Get PDF
    Proposed in this paper is the design of an innovative and compact antenna array which based on four radiating elements for multi-input multi-output (MIMO) antenna applications used in 5G communication systems. The radiating elements are fractal curves excited using an open-circuited feedline through a coplanar waveguide (CPW). The feedline is electromagnetically coupled to the inside edge of the radiating element. The array’s impedance bandwidth is enhanced by inserting a ground structure composed of low–high-low impedance between the radiating elements. The low-impedance section of the ground is a staircase structure that is inclined at an angle to follow the input feedline. This inter-radiating element essentially suppresses near-field radiation between adjacent radiators. A band reject filter based on a composite right/left hand (CRLH) structure is mounted at the back side of the antenna array to reduce mutual coupling between the antenna elements by choking surface wave propagations that can otherwise degrade the radiation performance of the array antenna. The CRLH structure is based on the Hilbert fractal geometry, and it was designed to act like a stop band filter over the desired frequency bands. The proposed antenna array was fabricated and tested. It covers the frequency bands in the range from 2 to 3 GHz, 3.4–3.9 GHz, and 4.4–5.2 GHz. The array has a maximum gain of 6.2dBi at 3.8 GHz and coupling isolation better than -20 dB. The envelope correlation coefficient of the antenna array is within the acceptable limit. There is good agreement between the simulated and measured results
    corecore