290 research outputs found

    Adaptive Antenna Composed of Six Dipole Elements for Wireless LAN

    Get PDF
    International symposium on Antennas and Propagation (ISAP2008), Taipei, Taiwan, TP-C28, 1645414, Oct.29 2008

    Five amino acid residues in cysteine-rich domain of human T1R3 were involved in the response for sweet-tasting protein, thaumatin.

    Get PDF
    Thaumatin, a sweet-tasting plant protein, elicits a sweet taste sensation at 50 nM in humans but not rodents. Although it was shown that the cysteine-rich domain (CRD) of human T1R3 (hT1R3) is important for the response to thaumatin, the amino acid residues within CRD critical for response are still unknown. A comparison of the amino acid sequence (69 amino acid residues) of CRD between hT1R3 and mouse T1R3 (mT1R3) revealed sixteen amino acids that differ. In the present study, we converted each of these sixteen amino acids in hT1R3 to their mouse counterpart and examined the response to thaumatin and sucralose using a cell-based assay. No significant decrease in the response to sucralose was seen among any of the sixteen mutants. However, five mutants (Q504K, A537T, R556P, S559P, and R560K) exhibited a significantly diminished response to thaumatin. The five critical residues involved in the response to thaumatin were dispersed in the CRD of hT1R3 and widely distributed when compared to brazzein. The unique intense sweet-taste of thaumatin might be attributed to the different receptor activation mechanism compared to the small molecule sweetener sucralose

    Clinical effects of a selective urate reabsorption inhibitor dotinurad in patients with hyperuricemia and treated hypertension : a multicenter, prospective, exploratory study (DIANA)

    Get PDF
    Introduction Dotinurad is a newer urate-lowering agent that selectively inhibits urate transporter 1 in the renal proximal tubule and increases urinary urate excretion. Currently, little is known about the clinical efficacies of dotinurad in patients with hyperuricemia and hypertension. The aim of this study was to assess the clinical effects of a selective urate reabsorption inhibitor dotinurad on serum uric acid (SUA) levels and relevant vascular markers in patients with hyperuricemia and treated hypertension. Methods This investigator-initiated, multicenter, prospective, single-arm, open-label, exploratory clinical trial in Japan enrolled patients with hyperuricemia and treated hypertension who received a 24-week dotinurad therapy (a starting dose at 0.5 mg once daily and up-titrated to 2 mg once daily). The primary endpoint was a percentage change in the SUA level from baseline to week 24. The secondary endpoints were cardiovascular and metabolic measurements, including changes in the cardio-ankle vascular index (CAVI) and derivatives of reactive oxygen metabolites (d-ROMs) concentration at week 24. Results Fifty patients (mean age 70.5 ± 11.0 years, with 76.0% being men, and mean SUA level 8.5 ± 1.2 mg/dL) were included in the analysis. The percentage change from baseline in the SUA level at week 24 was − 35.8% (95% confidence interval [CI] − 39.7% to − 32.0%, P < 0.001), with approximately three quarters of patients achieving an SUA level of ≤ 6.0 mg/dL at week 24. The proportional changes from baseline in the geometric mean of CAVI and d-ROMs at week 24 were 0.96 (95% CI 0.92 to 1.00, P = 0.044) and 0.96 (95% CI 0.92 to 1.00, P = 0.044), respectively. Conclusion In addition to meaningful SUA-lowering effects, 24 weeks of dotinurad therapy may favorably affect arterial stiffness and oxidative stress markers, suggesting off-target vascular protection of dotinurad. Further research is expected to verify our findings and elucidate the entire off-target effects of dotinurad

    Chemical Pleurodesis Could Exacerbate Lymphedema of Yellow Nail Syndrome

    Get PDF
    Chemical pleurodesis is sometimes performed for the management of intractable pleural effusion. We describe a woman with yellow nail syndrome (YNS), which is characterized by yellow discoloration of the nails, lymphedema, and pleural effusion. At the age of 43, she was hospitalized with edema of the lower limbs. Despite a number of medical treatments, massive lymphedema of lower limbs developed over a period of three years, resulting in skin cracks and subsequent infection, septicemia and multiple organ failure. At autopsy, abnormally dilated lymph and blood vessels were evident in soft tissue throughout the whole body. She had undergone chemical pleurodesis at 36 years of age for reduction of pleural effusion associated with YNS. Our case illustrates possible complication of chemical pleurodesis to YNS, which resulted in accumulation of lymph flow into the lower half of the body

    High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A

    Get PDF
    Methylglyoxal is a highly reactive dicarbonyl degradation product formed from triose phosphates during glycolysis. Methylglyoxal forms stable adducts primarily with arginine residues of intracellular proteins. The biologic role of this covalent modification in regulating cell function is not known. Here we report that in mouse kidney endothelial cells, high glucose causes increased methylglyoxal modification of the corepressor mSin3A. Methylglyoxal modification of mSin3A results in increased recruitment of O-GlcNAc-transferase, with consequent increased modification of Sp3 by O-linked N-acetylglucosamine. This modification of Sp3 causes decreased binding to a glucose-responsive GC-box in the angiopoietin-2 (Ang-2) promoter, resulting in increased Ang-2 expression. Increased Ang-2 expression induced by high glucose increased expression of intracellular adhesion molecule 1 and vascular cell adhesion molecule 1 in cells and in kidneys from diabetic mice and sensitized microvascular endothelial cells to the proinflammatory effects of tumor necrosis factor alpha. This novel mechanism for regulating gene expression may play a role in the pathobiology of diabetic vascular disease

    Association between preoperative toe perfusion index and maternal core temperature decrease during cesarean delivery under spinal anesthesia: a prospective cohort study

    Get PDF
    Background: The main mechanism of body temperature decrease during cesarean delivery under spinal anesthesia is core-to-peripheral redistribution of body heat, attributable to vasodilation. Perfusion index (PI) obtained with a pulse oximeter helps to assess peripheral perfusion dynamics by detecting the change in peripheral vascular tone. This study aimed to examine whether preoperative toe PI could predict the decrease in core temperature induced by spinal anesthesia during cesarean delivery.Methods: Parturients undergoing scheduled cesarean delivery under combined spinal-epidural anesthesia from September 2019 to March 2020 were enrolled in this single-center prospective cohort study. All parturients received 0.5% hyperbaric bupivacaine (10 mg) with fentanyl (15 μg) intrathecally. A pulse oximeter probe was placed on the left second toe for continuous PI measurement. The 3 M™ Bair Hugger™ Temperature Monitoring System placed over the right temporal region was used to record core temperature over time. We evaluated the association between the maximum core temperature decrease, which is the primary outcome, and the preoperative toe PI at operating room (OR) admission using a segmented regression model (SRM) and a generalized additive model (GAM). The maximum core temperature decrease was defined as the difference between core temperature at OR admission and minimum intraoperative core temperature.Results: Forty-eight patients were evaluated. In the SRM, the slope for the association between the maximum core temperature decrease and the preoperative toe PI changed from 0.031 to 0.124 after PI = 2.4%. Likewise, with the GAM, there was a small core temperature decrease when preoperative toe PI was greater than 2.0 to 3.0%.Conclusions: Low preoperative toe PI was associated with maternal core temperature decrease during cesarean delivery under spinal anesthesia. Preoperative toe PI is a simple, non-invasive, and effective tool for the early prediction of perioperative core temperature decrease during cesarean delivery.Trial registration: UMIN Clinical Trials Registry (registry number: UMIN000037965)
    corecore