oto University Research Information Repository	
Title	Five amino acid residues in cysteine-rich domain of human T1R3 were involved in the response for sweet-tasting protein, thaumatin.
Author(s)	Masuda, Tetsuya; Taguchi, Wakana; Sano, Ayane; Ohta, Keisuke; Kitabatake, Naofumi; Tani, Fumito
Citation	Biochimie (2013), 95(7): 1502-1505
Issue Date	2013-07
URL	http://hdl.handle.net/2433/175269
Right	© 2013 Elsevier Masson SAS.
Туре	Journal Article
Textversion	author

1	Five amino acid residues in cysteine-rich domain of human T1R3 were
2	involved in the response for sweet-tasting protein, thaumatin.
3	
4	Authors: Tetsuya Masuda ^{a,} *, Wakana Taguchi ^a , Ayane Sano ^a ,
5	Keisuke Ohta ^a , Naofumi Kitabatake ^b , and Fumito Tani ^a
6	Affiliation: ^a Division of Food Science and Biotechnology, Graduate
7	School of Agriculture, Kyoto University, Uji, Kyoto
8	611-0011, Japan
9	^b Department of Foods and Human Nutrition, Notre Dame
10	Seishin University, Okayama 700-8516 Japan
11	
12	* Corresponding author: Tetsuya Masuda,
13	Division of Food Science and Biotechnology,
14	Graduate School of Agriculture, Kyoto University,
15	Uji, Kyoto 611-0011, Japan
16	Telephone: +81-774-38-3741; Fax: +81-774-38-3740
17	E-mail: t2masuda@kais.kyoto-u.ac.jp
18	
19	

1 Abstract

2	Thaumatin, a sweet-tasting plant protein, elicits a sweet taste
3	sensation at 50 nM in humans but not rodents. Although it was shown that
4	the cysteine-rich domain (CRD) of human T1R3 (hT1R3) is important for
5	the response to thaumatin, the amino acid residues within CRD critical for
6	response are still unknown. A comparison of the amino acid sequence (69
7	amino acid residues) of CRD between hT1R3 and mouse T1R3 (mT1R3)
8	revealed sixteen amino acids that differ.
9	In the present study, we converted each of these sixteen amino acids
10	in hT1R3 to their mouse counterpart and examined the response to
11	thaumatin and sucralose using a cell-based assay. No significant decrease in
12	the response to sucralose was seen among any of the sixteen mutants.
13	However, five mutants (Q504K, A537T, R556P, S559P, and R560K)
14	exhibited a significantly diminished response to thaumatin. The five critical
15	residues involved in the response to thaumatin were dispersed in the CRD
16	of hT1R3 and widely distributed when compared to brazzein.
17	The unique intense sweet-taste of thaumatin might be attributed to
18	the different receptor activation mechanism compared to the small
19	molecule sweetener sucralose.

20 Keywords: Thaumatin; Sweet-tasting protein; Sweet receptor; Cysteine-rich domain

 $\mathbf{2}$

1 **1. Introduction**

Thaumatin is the one of the sweetest proteins known and used as a $\mathbf{2}$ 3 low-calorie sugar substitute as well as for medical purposes for lifestyle-related diseases. Thaumatin is 100,000-fold sweeter than sucrose 4 on a molar basis and this intense sweetness makes thaumatin useful for 5 unveiling the interaction between sweeteners and sweet receptors. As 6 sweet-tasting proteins are too large to fit the cavity of the interaction sites $\overline{7}$ for small sweeteners, the activation of sweet receptors by sweet-tasting 8 proteins seems to occur in a different manner compared to other small 9 sweeteners [1-3]. Previous mutational studies of thaumatin suggested that 10 K67 and R82 are important to the sweetness of thaumatin, and mutations at 11 R82 had a more deteriorative effect on sweetness than mutations at K67 12[4]. 13

The heterodimers comprising the subunits T1R2 and T1R3, which belong to a family of class C G-protein-coupled receptors, are known to function as sweet receptors [5-8]. Each subunit of sweet receptor possesses a large N-terminal domain (NTD) and a cysteine-rich domain (CRD), and followed by a seven-helix transmembrane domain (TMD). The CRD links the NTD and TMD. Previous studies have shown that sweet-tasting proteins as well as aspartame can be perceived by humans, apes, and Old

1	World monkeys but not New World monkeys and rodents [9, 10]. Species
2	differences in the response to sweeteners would provide valuable
3	information on the molecular mechanism by which sweet receptors
4	function as well as aid the identification of interaction sites in receptors
5	[10-14]. Recently, we have shown that the CRD within hT1R3 is important
6	for the response toward thaumatin [14]. However, it remains unclear
7	whether two sweet-tasting proteins, thaumatin and brazzein, interact with
8	the same amino acid residues in the CRD of human sweet receptors.
9	In the present study, to clarify the amino acid residues within the
10	CRD of hT1R3 critical for thaumatin reception and to clarify the
11	mechanisms by which thaumatin activates sweet receptors, we performed
12	site-directed mutagenesis in the CRD of hT1R3 relative to the CRD of
13	mT1R3. The findings should help clarify the activation mechanisms of
14	proteinous sweeteners and might lead to the design of new sweeteners.
15	

- **2. Materials and methods**
- *2.1. Materials*

Thaumatin I was purified from crude thaumatin powder as described
previously [15]. Sucralose were obtained from Wako Pure Chemical
Industries Ltd. (Osaka, Japan).

2

2.2. Site-directed mutagenesis of the CRD of hT1R3

3	The plasmid pcDNA3.3-hT1R3 was used as the template for
4	mutagenesis [14]. Site-directed mutagenesis was performed using a KOD
5	Plus DNA polymerase (Toyobo Co. Ltd., Osaka, Japan) with two synthetic
6	complementary to opposite strands of oligonucleotide primers containing
7	the desired mutation (Operon Biotechnologies, Tokyo, Japan, Supplement
8	Table 1). The desired mutations were confirmed by DNA sequencing.
9	

10 2.3. Functional expression of human sweet receptors

11	Human T1R2- and T1R3- or T1R3 mutant-containing plasmids were
12	transiently transfected into HEK293 cells stably expressing the chimeric
13	G-protein, $G\alpha_{16gust44}$ as described previously [14]. After the transfection,
14	cells were seeded onto polylysine-coated 96-well culture plates (1.5×10^5
15	cells/well) (BD Biosciences, Bedford, MA) and incubated for 24 h. They
16	were then loaded with 50 μL of 3 μM fluo-8 AM (ABD Bioquest Inc.,
17	Sunnyvale, CA) in Hank's balanced salt solution (HBSS) containing 20
18	mM Hepes and 1.25 mM probenecid for 30 min at 37 °C. The cells were
19	incubated with 180 μ L of 20 mM Hepes-HBSS containing 0.625 mM
20	probenecid for 10 min at 37 °C. Stimulation was performed by adding 20

1	μ L of agonist solution dissolved in 20 mM Hepes-HBSS. The response to
2	sucralose (1mM) or thaumatin (50 μ M) was detected by measuring
3	fluorescence (excitation at 495 nm and emission at 514 nm) using an
4	Infinite F200 (Tecan Group Ltd., Männedorf, Switzerland) as described
5	previously [14]. The response of hT1R2- wild-type hT1R3 (no mutation)
6	was defined as 100% and the response of each hT1R3 mutant was
7	compared to that of hT1R2- wild-type hT1R3.
8	
9	3. Results and Discussion
10	
11	Since thaumatin elicits an intense sweet taste compared to other
12	artificial sweeteners, identifying the amino acid residues required for the
13	response to thaumatin and the mechanisms by which receptors are activated
14	by thaumatin would shed light on how to design new intense sweeteners.
15	Thaumatin is a basic protein (isoelectric point $=12$) [16], and we reported
16	previously the importance of the basicity for its sweetness [4, 17]. These
17	positively-charged residues might affect some charged residues within the
18	CRD of hT1R3. First, three mutants (Q504K, E525K, and Q531K) were
19	prepared to examine the response to thaumatin as well as sucralose. No

1	three mutants, whereas the Q504K mutant showed a significantly
2	diminished response to thaumatin (Fig. 1). Q504 is located in the
3	N-terminal region in the CRD of hT1R3 and is an essential determinant of
4	the specific response to thaumatin (Fig. 2). Since the N-terminal region of
5	the CRD was found to be important for the response to thaumatin, the
6	effect of the mutation E505D which is adjacent to Q504 was investigated.
7	No significant decrease in the response to either sucralose or thaumatin was
8	observed. These results suggested that only the glutamine residue at 504 is
9	essential to the response to thaumatin. Besides the Q504K mutant, a
10	relative decrease in the response to thaumatin was seen for the E525K
11	mutant (Fig. 1B). These results suggest that strict amino acid positions as
12	well as acidic and/or polar residues are important for the response to
13	thaumatin. A relative increase in the response to thaumatin was seen for the
14	Q531K mutant, and the N532H mutation had no effect on responses to
15	thaumatin and sucralose (Fig. 1). The requirement of the N-terminal region
16	of CRD in hT1R3 for the response to thaumatin may be a novel target for
17	the activation of receptors by signal transduction.
18	Brazzein is a small (6.5 kDa) sweet-tasting protein [18]. Two amino
19	acid residues, A537 and F540, located in the middle of CRD are important
20	for the response to brazzein (Fig. 2A) [11]. Next we examined the effect of

 $\mathbf{7}$

1	mutating A537 and F540 on the response to thaumatin. As shown in Fig.
2	1B , the A537T mutant had a significantly reduced response to thaumatin.
3	Although a relative decrease in the response to thaumatin as well as
4	sucralose was seen in the F540P mutant, the F540P mutant did not
5	significantly affect the response to thaumatin or sucralose in comparison to
6	the A537T mutant (Fig. 1). These results suggested F540 to be involved in
7	the response to brazzein but not thaumatin. The responses of the mutants
8	I536F, A537T, F540P, G542N, and E545Q to brazzein and small
9	sweeteners such as sucrose were previously examined [11]. Our results
10	showed responses of the I536F, G542N, and E545Q to thaumatin and
11	sucralose to be reduced in comparison with those of wild-type hT1R3 but
12	not significantly and were similar to those of Jiang et al [11].
13	We next converted each of the remaining six amino acids of hT1R3
14	located in the C-terminal region of the CRD in hT1R3 to their mouse
15	counterpart and examined the response to thaumatin and sucralose. All six
16	mutants (R550K, R553A, F555L, R556P, S559P, and R560K) responded to
17	sucralose, however, three mutants (R556P, S559P, and R560K) showed
18	diminished responses to thaumatin and were located near the
19	transmembrane domain (Fig. 1B, 2B). These mutants might not be directly
20	involved in the interaction with the large sweet protein, thaumatin, because

1	of steric hindrance between receptors and large protein-ligands.
2	Interestingly, R556 and S559 resulted in a loss of response with
3	substitution to a proline residue. Previous observations by Jiang et al
4	indicated that the mutation A537P resulted in unresponsive to most
5	sweeteners [11]. They suggested that a change in backbone flexibility
6	might alter the formation of the predicted β -strand and thereby alter the
7	conformation of this region in a way that makes it less able to transmit the
8	signal through the receptor. Our observation is distinct in that the loss of
9	response was only to thaumatin, not to sucralose. Taken together, the
10	substitution of proline residues in the C-terminal region of the CRD in
11	hT1R3 seems to be critical for the response to thaumatin.
12	Although the three-dimensional structure of sweet receptors has not
13	yet been determined, homology modeling using a metabotropic glutamate
14	receptor as a template has provided various models for the interaction
15	between sweet receptors and sweet-tasting proteins [1-3]. In the wedge
16	model, sweet-tasting proteins fit into a large wedge-shaped cavity and
17	activate sweet receptors by binding to an external site, thus stabilizing an
18	active form of the receptors in the absence of small sweeteners [3].
19	Recently, the CRD of hT1R3 was implicated in the response to
20	sweet-tasting proteins [8, 11, 14]. However, it was suggested that the CRD

1	plays a major role in the conformational change from the ligand-binding
2	domain to the transmembrane domain [19]. Dose response curves for the
3	five mutations to thaumatin were further investigated (Supplement Fig. 1).
4	These results showed that no significant increases of responses were
5	detected for five mutations up to $100 \mu\text{M}$, suggesting that five residues in
6	the CRD of hT1R3 were involved in the response to thaumatin. Recent
7	high-resolution structural analyses of thaumatin have revealed the
8	flexibility and fluctuation of the side chains of critical residues to be
9	suitable for interaction with sweet receptors [15, 20]. Sweet-tasting
10	proteins would be useful for unveiling how the ligand-binding site of
11	sweet receptors confers a broad and/or specific receptive range.
12	In conclusion, we found only five amino acid residues in the CRD of
13	hT1R3 to be involved in the response to thaumatin and the mechanisms of
14	receptor activation by thaumatin to be different from that for the small
15	molecule sweetener sucralose. Furthermore, the residues involved in the
16	response to thaumatin are dispersed in the CRD of hT1R3.
17	Insights into the molecular mechanism by which thaumatin activates
18	sweet receptors may help in understanding the signal transduction by
19	sweeteners.

1 Acknowledgements

\sim
• •
~

3	This work was supported by Grants-in-aid for Young Scientists (B)
4	(T.M., no.19780074) and Scientific Research (C) (T.M., no. 22580105)
5	from The Japan Society for the Promotion of Science.
6	
7	Figures and legends
8	Figure 1. Five amino acid residues in the CRD of hT1R3 affect the
9	response to thaumatin.
10	Human T1R2- and T1R3 mutant containing plasmids were
11	transiently transfected into $G\alpha_{16gust44}$ -expressing HEK cells and responses
12	to sucralose (A) and thaumatin (B) were investigated by cell-based assay.
13	The responses of 16 mutants were averaged and analyzed with a one-way
14	ANOVA (analysis of variance). $*P < 0.05$, $**P < 0.01$.
15	
16	Figure 2. Alignment of amino acid sequences of the cysteine-rich domain
17	(CRD) of T1R3 derived from humans and mice.
18	(A) Conserved residues are indicated with black letters, and non-conserved
19	residues are in white. The residues important for the thaumatin response are

20 indicated in red circles. Two residues, Ala537 and Phe540, previously

1	identified as important for the response to brazzein [11] are also shown in
2	blue circles. (B) Schematic representation of the structure of the sweet
3	receptor. CRD of T1R3 is shown in blue and the five amino acid residues
4	involved in the response for thaumatin are shown in red. The figures were
5	prepared using Pymol [21] and Modeller [22].
6	
7	Supplement Figure 1. Dose-response of five mutants of CRD in hT1R3 to
8	thaumatin.
9	The dose-response analysis of wild-type (black circle), Q504K (red
10	diamond), A537T (brown square), R556P (green triangle), S559P (cyan
11	circle), and R560K (purple triangle). The response of hT1R2- wild-type
12	hT1R3 (no mutation) to thaumatin (50 μ M) was defined as 100%.
13	
14	References
15	
16	[1] P.A. Temussi, Why are sweet proteins sweet? Interaction of brazzein,
17	monellin and thaumatin with the T1R2–T1R3 receptor, FEBS Lett.
18	526 (2002) 1–3.
19	[2] M. Cui, P. Jiang, E. Maillet, M. Max, R.F. Margolskee, R. Osman, The
20	heterodimeric sweet taste receptor has multiple potential ligand

1	binding sites, Curr. Pharm. Des. 12 (2006) 4591-4600.
2	[3] P.A. Temussi, Determinants of sweetness in proteins: a topological
3	approach, J. Mol. Recognit. 24 (2011) 1033-1042.
4	[4] K. Ohta, T. Masuda, F. Tani, N. Kitabatake, Introduction of a negative
5	charge at Arg82 in thaumatin abolished responses to human
6	T1R2-T1R3 sweet receptors, Biochem. Biophys. Res. Commun. 413
7	(2011) 41–45.
8	[5] G. Nelson, M.A. Hoon, J. Chandrashekar, Y. Zhang, N.J.P. Ryba, C.S.
9	Zuker, Mammalian sweet taste receptors, Cell 106 (2001) 381–390.
10	[6] X. Li, L. Staszewski, H. Xu, K. Durick, M. Zoller, E. Adler, Human
11	receptors for sweet and umami taste, Proc. Natl. Acad. Sci. USA 99
12	(2002) 4692–4696.
13	[7] G.Q. Zhao, Y. Zhang, M.A. Hoon, J. Chandrashekar, I. Erlenbach, N.J.P.
14	Ryba, C.S. Zuker, The receptors for mammalian sweet and umami
15	taste, Cell 115 (2003) 255–266.
16	[8] F.M. Assadi-Porter, E.L. Maillet, J.T. Radek, J. Quijada, J.L. Markley,
17	M. Max, Key amino acid residues involved in multi-point binding
18	interactions between brazzein, a sweet protein, and the T1R2-T1R3
19	human sweet receptor, J. Mol. Biol. 398 (2010) 584–599.
20	[9] G. Hellekant, V. Danilova, Species differences toward sweeteners, Food

1 Chemistry, 56 (1996) 323–3328.

2	[10] B. Liu, M. Ha, XY. Meng, T. Kaur, M. Khaleduzzaman, Z. Zhang, P.
3	Jiang, X. Li, M. Cui, Molecular mechanism of species-dependent
4	sweet taste toward artificial sweeteners, J. Neurosci. 31 (2011)
5	11070–11076.
6	[11] P. Jiang, Q. Ji, Z. Liu, L.A. Snyder, L.M.J. Benard, R.F. Margolskee,
7	M. Max, The cysteine-rich region of T1R3 determines responses to
8	intensely sweet proteins, J. Biol. Chem. 279 (2004) 45068-45075.
9	[12] H. Xu, L. Staszewski, H. Tang, E. Adler, M. Zoller, X. Li, Different
10	functional roles of T1R subunits in the heteromeric taste receptors,
11	Proc. Natl. Acad. Sci. USA 101 (2004) 14258-14263.
12	[13] A. Koizumi, K. Nakajima, T. Asakura, Y. Morita, K. Ito, A.
13	Shimizu-Ibuka, T. Misaka, K. Abe, Taste-modifying sweet protein,
14	neoculin, is received at human T1R3 amino terminal domain,
15	Biochem. Biophys. Res. Commun. 358 (2007) 585-589.
16	[14] K. Ohta, T. Masuda, F. Tani, N. Kitabatake, The cysteine-rich domain
17	of human T1R3 is necessary for the interaction between human
18	T1R2-T1R3 sweet receptors and a sweet-tasting protein, thaumatin,
19	Biochem. Biophys. Res. Commun. 406 (2011) 435-438.
20	[15] T. Masuda, K. Ohta, B. Mikami, N. Kitabatake, High-resolution

1	structure of the recombinant sweet-tasting protein thaumatin I, Acta
2	Crystallogr. Sect. F67 (2011) 652-658.
3	[16] H. van der Wel, K. Loeve, Isolation and characterization of thaumatin
4	I and II, the sweet-tasting proteins from Thaumatococcus daniellii
5	Benth, Eur. J. Biochem. 31 (1972) 221-225.
6	[17] K. Ohta, T. Masuda, N. Ide, N. Kitabatake, Critical molecular regions
7	for elicitation of the sweetness of the sweet-tasting protein, thaumatin
8	I, FEBS J. 275 (2008) 3644–3652.
9	[18] D. Ming, G. Hellelant, Brazzein, a new high-potency thermostable
10	sweet protein from Pentadiplandra brazzeana B. FEBS. Lett. 355
11	(1994) 106–108.
12	[19] T. Muto, D. Tsuchiya, K. Morikawa, H. Jingami, Structures of the
13	extracellular regions of the group II/III metabotropic glutamate
14	receptors, Proc. Natl. Acad. Sci. USA 104 (2007) 3759-3764.
15	[20] T. Masuda, K. Ohta, F. Tani, N. Kitabatake, Crystal structure of the
16	sweet-tasting protein thaumatin II at 1.27 Å, Biochem. Biophys. Res.
17	Commun. 410 (2011) 457–460.
18	[21] W.L. DeLano, The PyMOL Molecular Graphics System, DeLano
19	Scientific San Carlos CA, USA, 2002.
20	[22] Z. Yang, K. Lasker, D. Schneidman-Duhovny, B. Webb, C.C. Huang,

- 1 E.F. Pettersen, T.D. Goddard, E.C. Meng, A. Sali, T.E. Ferrin, UCSF
- 2 Chimera, MODELLER, and IMP: An integrated modeling system, J.
- 3 Struct. Biol. 179 (2012) 269-278.

Figure 1.

Figure 2.