236 research outputs found
Recommended from our members
Steering the Volume of Tissue Activated With a Directional Deep Brain Stimulation Lead in the Globus Pallidus Pars Interna: A Modeling Study With Heterogeneous Tissue Properties
Objective: To study the effect of directional deep brain stimulation (DBS) electrode configuration and vertical electrode spacing on the volume of tissue activated (VTA) in the globus pallidus, pars interna (GPi).
Background: Directional DBS leads may allow clinicians to precisely direct current fields to different functional networks within traditionally targeted brain areas. Modeling the shape and size of the VTA for various monopolar or bipolar configurations can inform clinical programming strategies for GPi DBS. However, many computational models of VTA are limited by assuming tissue homogeneity.
Methods: We generated a multimodal image-based detailed anatomical (MIDA) computational model with a directional DBS lead (1.5 mm or 0.5 mm vertical electrode spacing) placed with segmented contact 2 at the ventral posterolateral “sensorimotor” region of the GPi. The effect of tissue heterogeneity was examined by replacing the MIDA tissues with a homogeneous tissue of conductance 0.3 S/m. DBS pulses (amplitude: 1 mA, pulse width: 60 μs, frequency: 130 Hz) were used to produce VTAs. The following DBS contact configurations were tested: single-segment monopole (2B-/Case+), two-segment monopole (2A-/2B-/Case+ and 2B-/3B-/Case+), ring monopole (2A-/2B-/2C-/Case+), one-cathode three-anode bipole (2B-/3A+/3B+/3C+), three-cathode three-anode bipole (2A-/2B-/2C-/3A+/3B+/3C+). Additionally, certain vertical configurations were repeated with 2 mA current amplitude.
Results: Using a heterogeneous tissue model affected both the size and shape of the VTA in GPi. Electrodes with both 0.5 mm and 1.5 mm vertical spacing (1 mA) modeling showed that the single segment monopolar VTA was entirely contained within the GPi when the active electrode is placed at the posterolateral “sensorimotor” GPi. Two segments in a same ring and ring settings, however, produced VTAs outside of the GPi border that spread into adjacent white matter pathways, e.g., optic tract and internal capsule. Both stacked monopolar settings and vertical bipolar settings allowed activation of structures dorsal to the GPi in addition to the GPi. Modeling of the stacked monopolar settings with the DBS lead with 0.5 mm vertical electrode spacing further restricted VTAs within the GPi, but the VTA volumes were smaller compared to the equivalent settings of 1.5 mm spacing
MTOR, p70S6K, AKT, and ERK1/2 levels predict sensitivity to mTOR and PI3K/mTOR inhibitors in human bronchial carcinoids
Bronchial carcinoids (BCs) are rare neuroendocrine tumors that are still orphans of medical treatment. Human BC primary cultures may display resistance to everolimus, an inhibitor of the mammalian target of rapamycin (mTOR), in terms of cell viability reduction. Our aim was to assess whether the novel dual phosphatidylinositol 3-kinase (PI3K)/mTOR inhibitor NVP-BEZ235 is effective in everolimus-resistant human BC tissues and cell lines. In addition, we searched for possible markers of the efficacy of mTOR inhibitors that may help in identifying the patients who may benefit from treatment with mTOR inhibitors, sparing them from ineffective therapy. We found that NVP-BEZ235 is twice as potent as everolimus in reducing cell viability and activating apoptosis in human BC tissues that display sensitivity to mTOR inhibitors, but is not effective in everolimus-resistant BC tissues and cell lines that bypass cyclin D1 downregulation and escape G0/G1 blockade. Rebound AKT activation was not observed in response to treatment with either mTOR inhibitor in the 'resistant' BC cells. In addition to total mTOR levels, putative markers of the sensitivity of BCs to mTOR inhibitors are represented by AKT, p70S6K (RPS6KB2), and ERK1/2 (MAPK3/1) protein levels. Finally, we validated these markers in an independent BC group. These data indicate that the dual PI3K/mTOR inhibitor NVP-BEZ235 is more potent than everolimus in reducing the proliferation of human BC cells. 'Resistant' cells display lower levels of mTOR, p70S6K, AKT, and ERK1/2, indicating that these proteins may be useful as predictive markers of resistance to mTOR and PI3K/mTOR inhibitors in human BCs. \ua9 2013 Society for Endocrinology
Management of Preschool Wheezing: Guideline from the Emilia-Romagna Asthma (ERA) Study Group
Preschool wheezing should be considered an umbrella term for distinctive diseases with different observable and measurable phenotypes. Despite many efforts, there is a large gap in knowledge regarding management of preschool wheezing. In order to fill this lack of knowledge, the aim of these guidelines was to define management of wheezing disorders in preschool children (aged up to 5 years). A multidisciplinary panel of experts of the Emilia-Romagna Region, Italy, addressed twelve different key questions regarding the management of preschool wheezing. Clinical questions have been formulated by the expert panel using the PICO format (Patients, Intervention, Comparison, Outcomes) and systematic reviews have been conducted on PubMed to answer these specific questions, with the aim of formulating recommendations. The GRADE approach has been used for each selected paper, to assess the quality of the evidence and the degree of recommendations. These guidelines represent, in our opinion, the most complete and up-to-date collection of recommendations on preschool wheezing to guide pediatricians in the management of their patients, standardizing approaches. Undoubtedly, more research is needed to find objective biomarkers and understand underlying mechanisms to assess phenotype and endotype and to personalize targeted treatment
A Critical Review of Adverse Effects to the Kidney: Mechanisms, Data Sources and In Silico Tools to Assist Prediction
Introduction: The kidney is a major target for toxicity elicited by pharmaceuticals and environmental pollutants. Standard testing which often does not investigate underlying mechanisms has proven not to be an adequate hazard assessment approach. As such, there is an opportunity for the application of computational approaches that utilise multi-scale data based on the Adverse Outcome Pathway (AOP) paradigm, coupled with an understanding of the chemistry underpinning the molecular initiating event (MIE) to provide a deep understanding of how structural fragments of molecules relate to specific mechanisms of nephrotoxicity.
Aims covered: The aim of this investigation was to review the current scientific landscape related to computational methods, including mechanistic data, AOPs, publicly available knowledge bases and current in silico models, for the assessment of pharmaceuticals and other chemicals with regard to their potential to elicit nephrotoxicity. A list of over 250 nephrotoxicants enriched with, where possible, mechanistic and AOP-derived understanding was compiled.
Expert opinion: Whilst little mechanistic evidence has been translated into AOPs, this review identified a number of data sources of in vitro, in vivo and human data that may assist in the development of in silico models which in turn may shed light on the inter-relationships between nephrotoxicity mechanisms
Differential response to pallidal deep brain stimulation among monogenic dystonias: systematic review and meta-analysis
ObjectiveGenetic subtypes of dystonia may respond differentially to deep brain stimulation of the globus pallidus pars interna (GPi DBS). We sought to compare GPi DBS outcomes among the most common monogenic dystonias.MethodsThis systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses and Meta-analysis of Observational Studies in Epidemiology guidelines. We searched PubMed for studies on genetically confirmed monogenic dystonia treated with GPi DBS documenting pre-surgical and post-surgical assessments using the Burke-Fahn-Marsden Dystonia Rating Scale Motor Score (BFMMS) and Burke-Fahn-Marsden Disability Score (BFMDS). We performed (i) meta-analysis for each gene mutation; (ii) weighted ordinary linear regression analyses to compare BFMMS and BFMDS outcomes between DYT-TOR1A and other monogenic dystonias, adjusting for age and disease duration and (iii) weighted linear regression analysis to estimate the effect of age, sex and disease duration on GPi DBS outcomes. Results were summarised with mean change and 95% CI.ResultsDYT-TOR1A (68%, 38.4 points; p<0.001), DYT-THAP1 (37% 14.5 points; p<0.001) and NBIA/DYT-PANK2 (27%, 21.4 points; p<0.001) improved in BFMMS; only DYT-TOR1A improved in BFMDS (69%, 9.7 points; p<0.001). Improvement in DYT-TOR1A was significantly greater than in DYT-THAP1 (BFMMS -31%), NBIA/DYT-PANK2 (BFMMS -35%; BFMDS -53%) and CHOR/DYT-ADCY5 (BFMMS -36%; BFMDS -42%). Worse motor outcomes were associated with longer dystonia duration and older age at dystonia onset in DYT-TOR1A, longer dystonia duration in DYT/PARK-TAF1 and younger age at dystonia onset in DYT-SGCE.ConclusionsGPi DBS outcomes vary across monogenic dystonias. These data serve to inform patient selection and prognostic counselling
Toxicity Associated with Stavudine Dose Reduction from 40 to 30 mg in First-Line Antiretroviral Therapy
To compare the incidence and timing of toxicity associated with the use of a reduced dose of stavudine from 40 to 30 mg in first-line antiretroviral therapy (ART) for HIV treatment and to investigate associated risk factors
Proceedings of the Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies
The proceedings of the 3rd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized. The Think Tank\u27s contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Presentations and discussions covered a broad range of topics, including policy and advocacy considerations for the future of DBS, connectomic approaches to DBS targeting, developments in electrophysiology and related strides toward responsive DBS systems, and recent developments in sensor and device technologies
- …