615 research outputs found

    Management of epilepsy in elderly

    Get PDF
    The prevalence of seizures and epilepsy in the elderly is generally underestimated. Epileptic seizures are not a rare occurrence in the elderly and their prevalence increases with age. The clinical manifestations of seizures, the aetiology, the treatment and the psychosocial impact of the epilepsy diagnosis may differ in the elderly. Differential diagnosis with episodes of unconsciousness and/or fall or other non-epileptic manifestations is often difficult. The presence of comorbidities, the polypharmatherapy and the age-related pharmacokinetic changes can represent a problem for the treatment of epilepsy in the elderly, with a higher risk of adverse effects and potentially inappropriate drug interactions. Epileptic seizures in the elderly can have semiological characteristics similar to those of other age groups. On the other hand, the richness of the electroclinical syndromes of childhood and adolescence is not found in the elderly, and, in particular, idiopathic generalized epilepsies are rarely expressed at this age. Symptomatic seizures related to acute structural injury or metabolic causes are particularly frequent. Therapy management of the elderly with an epileptic seizure should concern not only neurologists, but also general practitioners, geriatricians, and cardiologists, therefore involving a wide range of clinical specialties. This review aims to summarize the management of epilepsy in the elderly, reporting also differences in epidemiology, electroclinical features, aetiology and diagnostic procedures

    Triterpenoids from vitellaria paradoxa stem barks reduce nitrite levels in lps-stimulated macrophages

    Get PDF
    open7siVitellaria paradoxa C. F. Gaertn is widely used in African traditional medicine as an anti-inflammatory remedy to treat rheumatism, gastric problems, diarrhea, and dysentery. The phyto-chemical investigation of the ethyl acetate extract of V. paradoxa stem bark collected in Burkina Faso led to the isolation of eight known and two triterpenes undescribed to date (7 and 10), in the free alcohol form or as acetyl and cinnamyl ester derivatives. The stereostructures of the new compounds were elucidated using HR-ESIMS and 1D and 2D NMR data. The isolated compounds were evaluated in vitro for their inhibitory effect on nitrite levels on murine macrophages J774 stimulated with the lipopolysaccharide (LPS). Among all the compounds tested, lupeol cinnamate (3) and betulinic acid (5) showed a beneficial effect in reducing nitrite levels produced after LPS stimulation.openSirignano C.; Nadembega P.; Poli F.; Romano B.; Lucariello G.; Rigano D.; Taglialatela-Scafati O.Sirignano C.; Nadembega P.; Poli F.; Romano B.; Lucariello G.; Rigano D.; Taglialatela-Scafati O

    Antiplasmodial triterpenoids from the fruits of neem, Azadirachta indica.

    Get PDF
    J Nat Prod. 2010 Aug 27;73(8):1448-52. Antiplasmodial triterpenoids from the fruits of neem, Azadirachta indica. Chianese G, Yerbanga SR, Lucantoni L, Habluetzel A, Basilico N, Taramelli D, Fattorusso E, Taglialatela-Scafati O. Abstract Eight known and two new triterpenoid derivatives, neemfruitins A (9) and B (10), have been isolated from the fruits of neem, Azadirachta indica, a traditional antimalarial plant used by Asian and African populations. In vitro antiplasmodial tests evidenced a significant activity of the known gedunin and azadirone and the new neemfruitin A and provided useful information about the structure-antimalarial activity relationships in the limonoid class

    Cytotoxic Activity of Crude Extracts as well as of Pure Components from Jatropha Species, Plants Used Extensively in African Traditional Medicine

    Get PDF
    Extracts from Jatropha curcas, a plant used in African traditional medicine for various diseases, were tested for cytotoxic activity. The root extracts strongly reduced cell growth of tumor cells in vitro, a result consistent with the knowledge of the application of these plant extracts in traditional medicine, especially to cure/ameliorate cancer. A selection of pure diterpenoids existing in extracts from Jatropha species and isolated from J. curcas, for example, curcusone C, curcusone D, multidione, 15-epi-4Z-jatrogrossidentadion, 4Z-jatrogrossidentadion, 4E-jatrogrossidentadion, 2-hydroxyisojatrogrossidion, and 2-epi-hydroxyisojatrogrossidion, were likewise tested, and they also showed strong cytotoxic activity. It turned out that these extracts are highly active against L5178y mouse lymphoma cells and HeLa human cervix carcinoma cells, while they cause none or only very low activity against neuronal cell, for example, PC12. These data underscore that extracts from J. curcas or pure secondary metabolites from the plant are promising candidates to be anticancer drug, combined with low neuroactive effects

    A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability

    Get PDF
    Mutations in the KCNQ2 gene encoding for voltage-gated potassium channel subunits have been found in patients affected with early-onset epilepsies with wide phenotypic expression, ranging from Benign Familial Neonatal Seizures (BFNS) to epileptic encephalopathy with cognitive impairment, drug resistance, and characteristic EEG and neuroradiological features. By contrast, only few KCNQ3 mutations have been rarely described, mostly in patients with typical BFNS. We report clinical, genetic, and functional data from a family in which early-onset epilepsy and neurocognitive deficits segregated with a novel mutations in KCNQ3 (c.989G>T; p.R330L). Electrophysiological studies in mammalian cells revealed that incorporation of KCNQ3 R330L mutant subunits impaired channel function, suggesting a pathogenetic role for such mutation. The degree of functional impairment of channels incorporating KCNQ3 R330L subunits was larger than that of channels carrying another KCNQ3 mutation affecting the same codon but leading to a different amino acid substitution (p.R330C), previously identified in two families with typical BFNS. These data suggest that mutations in KCNQ3, similarly to KCNQ2, can be found in patients with more severe phenotypes including intellectual disability, and that the degree of the functional impairment caused by mutations at position 330 in KCNQ3 may contribute to clinical disease severity

    A novel hyperekplexia-causing mutation in the pre-transmembrane segment 1 of the human glycine receptor alpha1 subunit reduces membrane expression and impairs gating by agonists

    Get PDF
    In this study, we have compared the functional consequences of three mutations (R218Q, V260M, and Q266H) in the 1 subunit of the glycine receptor (GlyRA1) causing hyperekplexia, an inherited neurological channelopathy. In HEK-293 cells, the agonist EC50s for glycine- activated Cl currents were increased from 26 M in wtGlyRA1, to 5747, 135, and 129 M in R218Q, V260M, and Q266H GlyRA1 channels, respectively. Cl currents elicited by -alanine and taurine, which behave as agonists at wtGlyRA1, were decreased in V260M and Q266H mutant receptors and virtually abolished in GlyRA1 R218Q receptors. Gly-gated Cl currents were similarly antagonized by low concentrations of strychnine in both wild-type (wt) and R218Q GlyRA1 channels, suggesting that the Arg-218 residue plays a crucial role in GlyRA1 channel gating, with only minor effects on the agonist/ antagonist binding site, a hypothesis supported by our molecular model of the GlyRA1 subunit. The R218Q mutation, but not the V260M or the Q266H mutation, caused a marked decrease of receptor subunit expression both in total cell lysates and in isolated plasma membrane proteins. This decreased expression does not seem to explain the reduced agonist sensitivity of GlyRA1 R218Q channels since no difference in the apparent sensitivity to glycine or taurine was observed when wtGlyRA1 receptors were expressed at levels comparable with those of R218Q mutant receptors. In conclusion, multiple mechanisms may explain the dramatic decrease in GlyR function caused by the R218Q mutation, possibly providing the molecular basis for its association with a more severe clinical phenotype

    Activation of Kv7 potassium channels inhibits intracellular Ca2+ increases triggered by TRPV1-mediated pain-inducing stimuli in F11 immortalized sensory neurons

    Get PDF
    Kv7.2-Kv7.5 channels mediate the M-current (IKM), a K+-selective current regulating neuronal excitability and representing an attractive target for pharmacological therapy against hyperexcitability diseases such as pain. Kv7 channels interact functionally with transient receptor potential vanilloid 1 (TRPV1) channels activated by endogenous and/or exogenous pain-inducing substances, such as bradykinin (BK) or capsaicin (CAP), respectively; however, whether Kv7 channels of specific molecular composition provide a dominant contribution in BK- or CAP-evoked responses is yet unknown. To this aim, Kv7 transcripts expression and function were assessed in F11 immortalized sensorial neurons, a cellular model widely used to assess nociceptive molecular mechanisms. In these cells, the effects of the pan-Kv7 activator retigabine were investigated, as well as the effects of ICA-27243 and (S)-1, two Kv7 activators acting preferentially on Kv7.2/Kv7.3 and Kv7.4/Kv7.5 channels, respectively, on BK- and CAP-induced changes in intracellular Ca2+ concentrations ([Ca2+]i). The results obtained revealed the expression of transcripts of all Kv7 genes, leading to an IKM-like current. Moreover, all tested Kv7 openers inhibited BK- and CAP-induced responses by a similar extent (~60%); at least for BK-induced Ca2+ responses, the potency of retigabine (IC50~1 µM) was higher than that of ICA-27243 (IC50~5 µM) and (S)-1 (IC50~7 µM). Altogether, these results suggest that IKM activation effectively counteracts the cellular processes triggered by TRPV1-mediated pain-inducing stimuli, and highlight a possible critical contribution of Kv7.4 subunits
    corecore