1,083 research outputs found
Statistical Approach to Fiber Laser Microcutting of NIMONIC® C263 Superalloy Sheet Used in Effusion Cooling System of Aero Engines
AbstractIn order to reduce thermal stress and avoid premature failure of turbine blades in the hot section of aero-engines, a diffusion cooling system is often adopted. This system is a thin sheet, with a closely spaced holes array allowing a uniform cooling of the turbine blade thanks to the evenly distributing of the cooling fluid within its wall. The holes diameters vary in the range of 0.3-1.0 mm. Furthermore, tight tolerances, perpendicular surfaces, no burr, no recast layer, are required. In order to satisfy the hole requirements, typically EDM technique is adopted. However, EDM micro-drilling needs long process time (about 20 s for hole). A promising alternative is laser trepanning. In this technique, a laser beam, with a very small focused spot, is used to make a hole by circular cutting. The hole is obtained in few seconds (<3 s). In this work a preliminary study on laser microcutting of NIMONIC® C263 sheet is presented in order to verify the possibility to adopt a low-power Yb:YAG fiber laser for the microdrilling. Linear cutting tests were carried out on NIMONIC® C263 superalloy sheet, 0.38 mm thick, using a 100 W Yb:YAG fiber laser working in modulated regime. A systematic approach based on Design of Experiment (DoE) has been successfully adopted with the aim to detect which and how the process parameters affect the kerf geometry in term of kerf width, taper angle and tolerances. The examined process parameters were scan speed, on-time, pulse duration and gas pressure. A full factorial design and ANalysis Of VAriance (ANOVA) were applied. Experimental results show the possibility to obtain kerf characterized by narrow width (<100 μm), low taper angle values (<1.8°) and small tolerance (<0.22 μm). Then, the possibility to produce in-tolerance holes was proved
The Active Corona of HD 35850 (F8 V)
We present Extreme Ultraviolet Explorer spectroscopy and photometry of the
nearby F8 V star HD 35850 (HR 1817). The EUVE spectra reveal 28 emission lines
from Fe IX and Fe XV to Fe XXIV. The Fe XXI 102, 129 A ratio yields an upper
limit for the coronal electron density, log n < 11.6 per cc. The EUVE SW
spectrum shows a small but clearly detectable continuum. The line-to-continuum
ratio indicates approximately solar Fe abundances, 0.8 < Z < 1.6. The resulting
emission-measure distribution is characterized by two temperature components at
log T of 6.8 and 7.4. The EUVE spectra have been compared with non-simultaneous
ASCA SIS spectra of HD 35850. The SIS spectrum shows the same temperature
distribution as the EUVE DEM analysis. However, the SIS spectral firs suggest
sub-solar abundances, 0.34 < Z < 0.81. Although some of the discrepancy may be
the result of incomplete X-ray line lists, we cannot explain the disagreement
between the EUVE line-to-continuum ratio and the ASCA-derived Fe abundance.
Given its youth (t ~ 100 Myr), its rapid rotation (v sin i ~ 50 km/s), and its
high X-ray activity (Lx ~ 1.5E+30 ergs/s), HD 35850 may represent an activity
extremum for single, main-sequence F-type stars. The variability and EM
distribution can be reconstructed using the continuous flaring model of Guedel
provided that the flare distribution has a power-law index of 1.8. Similar
results obtained for other young solar analogs suggest that continuous flaring
is a viable coronal heating mechanism on rapidly rotating, late-type,
main-sequence stars.Comment: 32 pages incl. 14 figures and 3 tables. To appear in the 1999 April
10 issue of The Astrophysical Journa
The Brera Multi-scale Wavelet (BMW) ROSAT HRI source catalog. II: application to the HRI and first results
The wavelet detection algorithm (WDA) described in the accompanying paper by
Lazzati et al. is made suited for a fast and efficient analysis of images taken
with the High Resolution Imager (HRI) instrument on board the ROSAT satellite.
An extensive testing is carried out on the detection pipeline: HRI fields with
different exposure times are simulated and analysed in the same fashion as the
real data. Positions are recovered with few arcsecond errors, whereas fluxes
are within a factor of two from their input values in more than 90% of the
cases in the deepest images. At variance with the ``sliding-box'' detection
algorithms, the WDA provides also a reliable description of the source
extension, allowing for a complete search of e.g. supernova remnant or cluster
of galaxies in the HRI fields. A completeness analysis on simulated fields
shows that for the deepest exposures considered (~120 ks) a limiting flux of
\~3x10^{-15} erg/cm2/s can be reached over the entire field of view. We test
the algorithm on real HRI fields selected for their crowding and/or presence of
extended or bright sources (e.g. cluster of galaxies and of stars, supernova
remnants). We show that our algorithm compares favorably with other X-ray
detection algorithms such as XIMAGE and EXSAS. A complete catalog will result
from our analysis: it will consist of the Brera Multi-scale Wavelet Bright
Source Catalog (BMW-BSC) with sources detected with a significance >4.5 sigma
and of the Faint Source Catalog (BMW-FSC) with sources at >3.5 sigma. A
conservative estimate based on the extragalactic log(N)-log(S) indicates that
at least 16000 sources will be revealed in the complete analysis of the whole
HRI dataset.Comment: 6 pages, 11 PostScript figures, 1 gif figure, ApJ in pres
Models for the Type Ic Hypernova SN 2003lw associated with GRB 031203
The Gamma-Ray Burst 031203 at a redshift z=0.1055 revealed a highly reddened
Type Ic Supernova, SN 2003lw, in its afterglow light. This is the third well
established case of a link between a long-duration GRB and a type Ic SN. The SN
light curve is obtained subtracting the galaxy contribution and is modelled
together with two spectra at near-maximum epochs. A red VLT grism 150I spectrum
of the SN near peak is used to extend the spectral coverage, and in particular
to constrain the uncertain reddening, the most likely value for which is
E_{G+H}(B-V) about 1.07 +/- 0.05. Accounting for reddening, SN 2003lw is about
0.3 mag brighter than the prototypical GRB-SN 1998bw. Light curve models yield
a 56Ni mass of about 0.55 solar mass. The optimal explosion model is somewhat
more massive (ejecta mass about 13 solar mass) and energetic (kinetic energy
about 6 times 10^52 erg) than the model for SN 1998bw, implying a massive
progenitor (40 - 50 solar mass). The mass at high velocity is not very large
(1.4 solar mass above 30000 km/s, but only 0.1 solar mass above 60000 km/s),
but is sufficient to cause the observed broad lines. The similarity of SNe
2003lw and 1998bw and the weakness of their related GRBs, GRB031203 and
GRB980425, suggest that both GRBs may be normal events viewed slightly off-axis
or a weaker but possibly more frequent type of GRB.Comment: 19 pages, 8 figures, accepted for publication in Ap
Optical afterglow luminosities in the Swift epoch: confirming clustering and bimodality
We show that Gamma Ray Bursts (GRBs) of known redshift and rest frame optical
extinction detected by the Swift satellite fully confirm earlier results
concerning the distribution of the optical afterglow luminosity at 12 hours
after trigger (rest frame time). This distribution is bimodal and relatively
narrow, especially for the high luminosity branch. This is intriguing, given
that Swift GRBs have, on average, a redshift larger than pre-Swift ones, and is
unexpected in the common scenario explaining the GRB afterglow. We investigate
if the observed distribution can be the result of selection effects affecting a
unimodal parent luminosity distribution, and find that either the distribution
is intrinsically bimodal, or most (60 per cent) of the bursts are absorbed by a
substantial amount of grey dust. In both cases we suggest that most dark bursts
should belong to the underluminous optical family.Comment: 5 pages 3 figures, minor revision, added reference, accepted for
publication in MNRAS Letter
There is a short gamma-ray burst prompt phase at the beginning of each long one
We compare the prompt intrinsic spectral properties of a sample of short
Gamma--ray Burst (GRB) with the first 0.3 seconds (rest frame) of long GRBs
observed by Fermi/GBM. We find that short GRBs and the first part of long GRBs
lie on the same E_p--E_iso correlation, that is parallel to the relation for
the time averaged spectra of long GRBs. Moreover, they are indistinguishable in
the E_p--L_iso plane. This suggests that the emission mechanism is the same for
short and for the beginning of long events, and both short and long GRBs are
very similar phenomena, occurring on different timescales. If the central
engine of a long GRB would stop after ~0.3 * (1+z) seconds the resulting event
would be spectrally indistinguishable from a short GRB.Comment: 14 pages, 6 figures, MNRAS accepte
The SXI telescope on board EXIST: scientific performances
The SXI telescope is one of the three instruments on board EXIST, a
multiwavelength observatory in charge of performing a global survey of the sky
in hard X-rays searching for Supermassive Black Holes. One of the primary
objectives of EXIST is also to study with unprecedented sensitivity the most
unknown high energy sources in the Universe, like high redshift GRBs, which
will be pointed promptly by the Spacecraft by autonomous trigger based on hard
X-ray localization on board. The recent addition of a soft X-ray telescope to
the EXIST payload complement, with an effective area of ~950 cm2 in the energy
band 0.2-3 keV and extended response up to 10 keV will allow to make broadband
studies from 0.1 to 600 keV. In particular, investigations of the spectra
components and states of AGNs and monitoring of variability of sources, study
of the prompt and afterglow emission of GRBs since the early phases, which will
help to constrain the emission models and finally, help the identification of
sources in the EXIST hard X-ray survey and the characterization of the
transient events detected. SXI will also perform surveys: a scanning survey
with sky coverage of about 2pi and limiting flux of 5x10^{-14}cgs plus other
serendipitous. We give an overview of the SXI scientific performance and also
describe the status of its design emphasizing how it has been derived by the
scientific requirements.Comment: 9 pages, 6 figures, to be published in Proc. of SPIE, vol 7435-11,
200
Timing accuracy of the Swift X-Ray Telescope in WT mode
The X-Ray Telescope (XRT) on board Swift was mainly designed to provide
detailed position, timing and spectroscopic information on Gamma-Ray Burst
(GRB) afterglows. During the mission lifetime the fraction of observing time
allocated to other types of source has been steadily increased. In this paper,
we report on the results of the in-flight calibration of the timing
capabilities of the XRT in Windowed Timing read-out mode. We use observations
of the Crab pulsar to evaluate the accuracy of the pulse period determination
by comparing the values obtained by the XRT timing analysis with the values
derived from radio monitoring. We also check the absolute time reconstruction
measuring the phase position of the main peak in the Crab profile and comparing
it both with the value reported in literature and with the result that we
obtain from a simultaneous Rossi X-Ray Timing Explorer (RXTE) observation. We
find that the accuracy in period determination for the Crab pulsar is of the
order of a few picoseconds for the observation with the largest data time span.
The absolute time reconstruction, measured using the position of the Crab main
peak, shows that the main peak anticipates the phase of the position reported
in literature for RXTE by ~270 microseconds on average (~150 microseconds when
data are reduced with the attitude file corrected with the UVOT data). The
analysis of the simultaneous Swift-XRT and RXTE Proportional Counter Array
(PCA) observations confirms that the XRT Crab profile leads the PCA profile by
~200 microseconds. The analysis of XRT Photodiode mode data and BAT event data
shows a main peak position in good agreement with the RXTE, suggesting the
discrepancy observed in XRT data in Windowed Timing mode is likely due to a
systematic offset in the time assignment for this XRT read out mode.Comment: 6 pages, 4 figures. Accepted for publication on
Astronomy&Astrophysic
Design and advancement status of the Beam Expander Testing X-ray facility (BEaTriX)
The BEaTriX (Beam Expander Testing X-ray facility) project is an X-ray
apparatus under construction at INAF/OAB to generate a broad (200 x 60 mm2),
uniform and low-divergent X-ray beam within a small lab (6 x 15 m2). BEaTriX
will consist of an X-ray source in the focus a grazing incidence paraboloidal
mirror to obtain a parallel beam, followed by a crystal monochromation system
and by an asymmetrically-cut diffracting crystal to perform the beam expansion
to the desired size. Once completed, BEaTriX will be used to directly perform
the quality control of focusing modules of large X-ray optics such as those for
the ATHENA X-ray observatory, based on either Silicon Pore Optics (baseline) or
Slumped Glass Optics (alternative), and will thereby enable a direct quality
control of angular resolution and effective area on a number of mirror modules
in a short time, in full X-ray illumination and without being affected by the
finite distance of the X-ray source. However, since the individual mirror
modules for ATHENA will have an optical quality of 3-4 arcsec HEW or better,
BEaTriX is required to produce a broad beam with divergence below 1-2 arcsec,
and sufficient flux to quickly characterize the PSF of the module without being
significantly affected by statistical uncertainties. Therefore, the optical
components of BEaTriX have to be selected and/or manufactured with excellent
optical properties in order to guarantee the final performance of the system.
In this paper we report the final design of the facility and a detailed
performance simulation.Comment: Accepted paper, pre-print version. The finally published manuscript
can be downloaded from http://dx.doi.org/10.1117/12.223895
- …