44 research outputs found
Photo-induced growth of silver nanoparticles using UV sensitivity of cellulose fibers
A simple method has been demonstrated to grow silver nanoparticles on the surface of cellulose fibers. The preparation is based on photo-activation of surface by ultraviolet (UV) photons, followed by chemical reduction of silver nitrate. It is found that the concentration of silver nitrate in the solution is not a determining factor, while UV intensity affects the rate of initial growth and determines the final concentration of the loaded silver. We explain the phenomena based on a model including the number of reducing sites on the surface of cellulose fibers activated by UV photons, and a release mechanism that causes a slow rate of dissolution of silver back into the solution. (C) 2011 Elsevier B.V. All rights reserved
Easily manufactured TiO2 hollow fibers for quantum dot sensitized solar cells
TiO2
hollow fibers with high surface area were manufactured by a simple synthesis method, using
natural cellulose fibers as template. The effective light scattering properties of the hollow fibers,
originating from their micron size, were observed by diffuse reflectance spectroscopy. In spite of
the micrometric length of the TiO2
hollow fibers, the walls were highly porous and high surface
area (78.2 m2
g
1
) was obtained by the BET method. TiO2
hollow fibers alone and mixed with
other TiO2
pastes were sensitized with CdSe quantum dots (QDs) by Successive Ionic Layer
Adsorption and Reaction (SILAR) and integrated as a photoanode in quantum dot sensitized
solar cells (QDSCs). High power conversion efficiency was obtained, 3.24% (Voc = 503 mV,
Jsc = 11.92 mA cm 2
, FF = 0.54), and a clear correspondence of the cell performance with
the photoanode structure was observed. The unique properties of these fibers: high surface
area, effective light scattering, hollow structure to facile electrolyte diffusion and the rather
high efficiencies obtained here suggest that hollow fibers can be introduced as promising
nanostructures to make highly efficient quantum dot sensitized solar cells
Enhanced Electron Collection Efficiency in Dye-Sensitized Solar Cells Based on Nanostructured TiO2 Hollow Fibers
Nanostructured TiO2 hollow fibers have been prepared using natural cellulose fibers as a template. This cheap and easily processed material was used to produce highly porous photoanodes incorporated in dye-sensitized solar cells and exhibited remarkably enhanced electron transport properties compared to mesoscopic films made of spherical nanoparticles. Photoinjected electron lifetime, in particular, was multiplied by 3-4 in the fiber morphology, while the electron transport rate within the fibrous photoanaode was doubled. A nearly quantitative absorbed photon-to-electrical current conversion yield exceeding 95% was achieved upon excitation at 550 nm and a photovoltaic power conversion efficiency of 7.2% reached under simulated AM 1.5 (100 mW cm(-2)) solar illumination
Low‐Temperature Processing Methods for Tin Oxide as Electron Transporting Layer in Scalable Perovskite Solar Cells
Perovskite solar cell (PSC) technology experiences a remarkably rapid growth toward commercialization with certified efficiency of over 25%, along with the outstanding breakthrough in the development of SnO2. Owing to the wide bandgap, high electron mobility, chemical stability, and low photocatalytic activity, SnO2 has been the rising star to serve as electron transporting layer (ETL). More importantly, the low-temperature fabrication process (<200 °C) enables SnO2 a promising candidate for the industry, making it compatible with the plastic substrates and large-scale production, which is crucial for the flexible and scalable devices fabrication. In this review, the processing methods (solution-based, vacuum-based, and vapor-based deposition) of low-temperature SnO2 (LT-SnO2) and the pros and cons of them with a focus on their scalability are discussed. Additionally, the morphologies of obtained LT-SnO2 are investigated to guide the design and performance improvement of devices. The modification strategies to reduce undesired nonradiative recombination and passivate the defects in the bulk or at the interface of LT-SnO2, influencing the quality of perovskite films, together with the efficiency and stability of cells are summarized. This review is a comprehensive overview of the studies on low-temperature SnO2 ETL and provides detailed instructions for scalable PSCs
Tunable Carbon–CsPbI3 Quantum Dots for White LEDs
In this work, a simple method to prepare white light emissive diodes based on quantum dot (QD) colloidal solutions using mixed carbon QDs (CQDs) and CsPbI3 perovskite (PQDs) is reported. The right combination generates emission across the entire visible spectrum upon ultraviolet excitation. The white light emission of the final films provides high and stable color rendering index of 92%, tuning the chromaticity coordinates of the emission through the applied voltage. By varying the CsPbI3 QD concentration, a mixture is obtained that emits the “warm”, “neutral”, and “cold” white light sought for many indoor lighting applications, or to approximate the visible region of the solar spectrum, respectively. Remarkably, the material syntheses are low cost and truly scalable. In addition, colloidal mixtures of CQDs and CsPbI3 PQDs show a facile deposition for light‐emitting diode (LED) application, showing white electroluminescence, indicating that both kinds of QDs are stable during LED operation. Last but not least, the photoluminescence quantum yield of the colloidal mixtures is higher (up to 75%) than single white emitters, showing itself as a promising system for white emission with tunable properties
When photoluminescence, electroluminescence, and open-circuit voltage diverge : light soaking and halide segregation in perovskite solar cells
Perovskite solar cells suffer from various instabilities on all time scales. Some of them are driven by light, in particular when employing compounds with mixed halides. Such light soaking effects have been observed in performance changes of solar-cell devices. They have also been spectroscopically investigated in detail on films, where the formation of a low-gap iodine rich phase, seen in a red shift of the PL has been made responsible for a reduced open-circuit voltage. However, studies synchronously examining device performance and its relation to spectroscopy data, are scarce. Here, we perform an in-operandum study, where we investigate changes of open-circuit voltage (Voc) and photocurrent during light soaking and complement it with photo- (PL) and electroluminescence (EL) data on devices, which allow analysis of the Voc-limiting processes using optical and optoelectronic reciprocity relations. We find that changes in the Voc for stable single halide compositions are quantitatively correlated with changes in the PL intensity, showing that the Voc follows changes in the quasi-Fermi level splitting. In contrast, changes in Voc for the mixed halide composition are not correlated to the emergence of the low-gap phase, confirming that this phase is not the sole culprit for a low and instable Voc. Instead, non-radiative voltage losses influenced by mobile ions are dominant in devices containing compositions with high Br content. Interestingly, the low-gap phase contributes less to photocurrent, as seen by a wavelength-dependent PL quenching at short circuit. This observation might be explained by the formation of emissive but partially insulated iodine-rich regions in the film. Such an effect is also possible for single halide systems, when the perovskite composition is not stable, seen in an increase of PL at short circuit during light soaking. This indicates that ion migration in general causes photovoltaically inactive regions, without enhancing non-radiative recombination. EL measurements confirm that Rau’s reciprocity relation between external EL quantum efficiency and Voc cannot readily be applied to absorbers with such different phases.Perovskite solar cells suffer from various instabilities on all time scales. Some of them are driven by light, in particular when employing compounds with mixed halides. Such light soaking effects have been observed in performance changes of solar-cell devices. They have also been spectroscopically investigated in detail on films, where the formation of a low-gap iodine rich phase, seen in a red shift of the PL has been made responsible for a reduced open-circuit voltage. However, studies synchronously examining device performance and its relation to spectroscopy data, are scarce. Here, we perform an in-operandum study, where we investigate changes of open-circuit voltage (Voc) and photocurrent during light soaking and complement it with photo- (PL) and electroluminescence (EL) data on devices, which allow analysis of the Voc-limiting processes using optical and optoelectronic reciprocity relations. We find that changes in the Voc for stable single halide compositions are quantitatively correlated with changes in the PL intensity, showing that the Voc follows changes in the quasi-Fermi level splitting. In contrast, changes in Voc for the mixed halide composition are not correlated to the emergence of the low-gap phase, confirming that this phase is not the sole culprit for a low and instable Voc. Instead, non-radiative voltage losses influenced by mobile ions are dominant in devices containing compositions with high Br content. Interestingly, the low-gap phase contributes less to photocurrent, as seen by a wavelength-dependent PL quenching at short circuit. This observation might be explained by the formation of emissive but partially insulated iodine-rich regions in the film. Such an effect is also possible for single halide systems, when the perovskite composition is not stable, seen in an increase of PL at short circuit during light soaking. This indicates that ion migration in general causes photovoltaically inactive regions, without enhancing non-radiative recombination. EL measurements confirm that Rau’s reciprocity relation between external EL quantum efficiency and Voc cannot readily be applied to absorbers with such different phases
Theoretical Study of Light Trapping in Nanostructured Thin Film Solar Cells Using Wavelength-Scale Silver Particles
We propose and theoretically evaluate a plasmonic light trapping solution for thin film photovoltaic devices that comprises a monolayer or a submonolayer of wavelength-scale silver particles. We systematically study the effect of silver particle size using full-wave electromagnetic simulations. We find that light trapping is significantly enhanced when wavelength-scale silver particles rather than the ones with subwavelength dimensions are used. We demonstrate that a densely packed monolayer of spherical 700 nm silver particles enhances integrated optical absorption under standard air mass 1.5 global (AM1.5G) in a 7 mu m-thick N719-sensitized solar cell by 40% whereas enhancement is smaller than 2% when 100 nm ones are used. Superior performance of wavelength-scale silver particles is attributed to high-order whispering gallery modes that they support. These modes scatter the light over a wider angular range, hence increasing the density of both waveguide and resonance modes within the dye-sensitized layer
Aggregates of plasmonic nanoparticles for broadband light trapping in dye-sensitized solar cells
Metallic nanoparticles (NPs) have not been effective in improving the overall performance of the cells with micrometer-thick absorbing layers mainly due to the parasitic optical dissipation in the metal. Here, using both experiment and theory, we demonstrate that aggregates of metallic NPs enhance the light absorption of dye-sensitized solar cells of a few micrometer-thick light absorbing layers. The composite electrode containing the optimal concentration of 5 wt% Au@SiO2 aggregates shows the enhancement of 80% and 52% in external quantum efficiency and photocurrent density, respectively. The superior performance of the aggregates relative to NP is attributed to their larger scattering efficiency using full-wave optical simulations. This is further confirmed by optical spectroscopic measurements showing that a large fraction of the incident light couples into the diffused components because of the presence of these metallic aggregates. The optical absorption enhancement is broadband and it is particularly strong at wavelengths larger than 680 nm where the optical absorption of dye molecules is weak
Chemically-stable flexible transparent electrode: gold-electrodeposited on embedded silver nanowires
Abstract Silver nanowires (AgNWs) with a low diameter, high aspect ratio, stable suspension, and easy synthesis have recently attracted the optoelectronic industry as a low-cost alternative to indium tin oxide transparent conductive films. However, silver nanowires are not chemically stable, and their conductivity diminishes over time due to reactions with atmospheric components. This is a bottleneck for their wide industrial applications. In this study, we aim to address this issue by synthesizing silver nanowires with an average diameter of approximately 65 nm and a length of approximately 13 µm. The prepared Ag nanowires are then applied to fabricate transparent, flexible, and chemically stable conductive films. The fabrication includes spraying of silver nanowires suspension on a glass substrate followed by Dr. blade coating of polystyrene (PS) solution and delamination of the PS-AgNWs film. The resulting film exhibits an optimum sheet resistance of 24 Ω/□ and transmittance of 84%. To further enhance the stability of the transparent conductive film, the facial and scalable double pulse electrodeposition method is used for coating of gold on the exposed surface of the AgNWs embedded in PS. The final transparent film with gold coating demonstrates a remarkable stability under harsh conditions including long exposure to UV light and nitric acid solution. After 100 min of UV/Ozone treatment, the increase in sheet resistance of the optimal PS-AgNW@Au sample is 15.6 times lower than the samples without gold coating. In addition, the change in sheet resistance after 2000 bending cycles in the optimal PS-AgNW@Au electrode is measured and it showed an increase of only 22% of its initial sheet resistance indicating its good flexibility. The proposed electrode performs an excellent chemical stability, good conductivity, transparency, and flexibility that makes it a potential candidate for various optoelectronic devices