52 research outputs found

    MME-EKF-Based Path-Tracking Control of Autonomous Vehicles Considering Input Saturation

    Get PDF
    This paper investigates the path-tracking control issue for autonomous ground vehicles with the integral sliding mode control (ISMC) considering the transient performance improvement. The path-tracking control is converted into the yaw stabilization problem, where the sideslip-angle compensation is adopted to reduce the steady-state errors, and then the yaw-rate reference is generated for the path-tracking purpose. The lateral velocity and roll angle are estimated with the measurement of the yaw rate and roll rate. Three contributions have been made in this paper: first, to enhance the estimation accuracy for the vehicle states in the presence of the parametric uncertainties caused by the lateral and roll dynamics, a robust extended Kalman filter is proposed based on the minimum model error algorithm; second, an improved adaptive radial basis function neural network (RBFNN) considering the approximation error adaptation is developed to compensate for the uncertainties caused by the vertical motion; third, the RBFNN and composite nonlinear feedback (CNF) based ISMC is developed to achieve the yaw stabilization and enhance the transient tracking performance considering the input saturation of the front steering angle. The overall stability is proved with Lyapunov function. Finally, the superiority of the developed control strategy is verified by comparing with the traditional CNF with high-fidelity CarSim-MATLAB simulations

    Risk-based autonomous vehicle motion control with considering human driver’s behaviour

    Get PDF
    The selected motions of autonomous vehicles (AVs) are subject to the constraints from the surrounding traffic environment, infrastructure and the vehicle’s dynamic capabilities. Normally, the motion control of the vehicle is composed of trajectory planning and trajectory following according to the surrounding risk factors, the vehicles’ capabilities as well as tyre/road interaction situations. However, pure trajectory following with a unique path may make the motion control of the vehicle be too careful and cautious with a large amount of steering effort. To follow a planned trajectory, the AVs with the traditional path-following control algorithms will correct their states even if the vehicles have only a slight deviation from the desired path or the vehicle detects static infrastructure like roadside trees. In this case, the safety of the AVs can be guaranteed to some degree, but the comfort and sense of hazards for the drivers are ignored, and sometimes the AVs have unusual motion behaviours which may not be acceptable to other road users. To solve this problem, this study aims to develop a safety corridor-based vehicle motion control approach by investigating human-driven vehicle behaviour and the vehicle’s dynamic capabilities. The safety corridor is derived by the manoeuvring action feedback of actual drivers as collected in a driving simulator when presented with surrounding risk elements and enables the AVs to have safe trajectories within it. A corridor-based Nonlinear Model Predictive Control (NMPC) has been developed which controls the vehicle state to achieve a smooth and comfortable trajectory while applying trajectory constraints using the safety corridor. The safety corridor and motion controller are assessed using four typical scenarios to show that the vehicle has a human-like or human-oriented behaviour which is expected to be more acceptable for both drivers and other road users

    Comparison of different techniques for characterizing the diesel injector internal dimensions

    Full text link
    [EN] The geometry of certain parts of diesel injectors is key to the injection, atomization and fuel-air mixing phenomena. Small variations on the geometrical parameters may have a strong influence on the aforementioned processes. Thus, OEMs need to assess their manufacturing tolerances, whereas researchers in the field (both experimentalists and modelers) rely on the accuracy of a certain metrology technique for their studies. In the current paper, an investigation of the capability of different experimental techniques to determine the geometry of a modern diesel fuel injector has been performed. For this purpose, three main elements of the injector have been evaluated: the control volume inlet and outlet orifices, together with the nozzle orifices. While the direct observation of the samples through an optical microscope is only possible for the simplest pieces, both Computed Tomography Scanning and the visualization of silicone molds technique have proven their ability to characterize the most complex internal shapes corresponding to the internal injector elements. Indeed, results indicate that the differences observed among these methodologies for the determination of the control volume inlet orifice diameter and the nozzle orifice dimensions are smaller than the uncertainties related to the experimental techniques, showing that they are both equally accurate. This implies that the choice of a given technique for the particular application of determining the geometry of diesel injectors can be done on the basis of availability, intrusion and costs, rather than on its accuracy.This work was partly sponsored by "Ministerio de Economia y Competitividad", of the Spanish Government, in the frame of the Project "Estudio de la interaccion chorro-pared en condiciones realistas de motor", Reference TRA2015-67679-c2-1-R.Salvador, FJ.; Gimeno, J.; De La Morena, J.; Carreres, M. (2018). Comparison of different techniques for characterizing the diesel injector internal dimensions. Experimental Techniques. 42(5):467-472. https://doi.org/10.1007/s40799-018-0246-1S467472425Mobasheri R, Peng Z, Mostafa S (2012) Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling. Int J Heat Fluid Flow 33(1):59–69Dhar A, Agarwal AK (2015) Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine. Energy Convers Manag 93:357–366Mohan B, Yang W, Chou SK (2013) Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—a review. Renew Sust Energ Rev 28(x):664–676Petrovic V, Bracanovic Z, Grozdanic B, Petrovic S, Sazhin S, Knezevic D (2015) The design of a full flow dilution tunnel with a critical flow venturi for the measurement of diesel engine particulate emission. FME Trans 43(2):99–106Ilić Z, Rasuo B, Jovanović M, Janković D (2013) Impact of changing quality of air/fuel mixture during flight of a piston engine aircraft with respect to vibration low frequency spectrum. FME Trans 41(1):25–32Luján JM, Tormos B, Salvador FJ, Galgar K (2009) Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Preliminaru study I. Biomass & Bioenergy 33(6–7):941–947Postrioti L, Mariani F, Battistoni M (2012) Experimental and numerical momentum flux evaluation of high pressure diesel spray. Fuel 98:149–163Payri R, Salvador FJ, Gimeno J, Venegas O (2016) A technique to match the refractive index of different diesel fuels with the refractive index of transparent materials to improve the experimental visualization. Exp Tech 40(1):261–269Duran SP, Porter JM, Parker TE (2015) Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration. Appl Opt 54(7):1743Payri R, Salvador FJ, Gimeno J et al (2011) Flow regime effects on non-cavitating injection nozzles over spray behavior. Int J Heat Fluid Flow 32(1):273–284Koukouvinis P, Gavaises M, Li J, Wang L (2016) Large Eddy simulation of diesel injector including cavitation effects and correlation to erosion damage. Fuel 175:26–39Som S, Aggarwal SK (2010) Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combust Flame 157(6):1179–1193Salvador FJ, De la Morena J, Martínez-López J, Jaramillo D (2017) Assessment of compressibility effects on internal nozzle flow in diesel injectors at very high injection pressures. Energy Convers Manag 132:221–230Salvador FJ, Gimeno J, de la Morena J, Martí-Aldaraví P (2012) Using one-dimensional modelling to analyze the influence of the use of biodiesels on the dynamic behaviour of solenoid-operated injectors in common rail systems: Results of the simulation and discussion. Energy Convers Manag 54(1):122–132Taghavifar H, Khalilarya S, Jafarmadar S, Baghery F (2016) 3-D numerical consideration of nozzle structure on combustion and emission characteristics of DI diesel injector. Appl Math Model 40(19–20):8630–8646Edelbauer W (2017) Numerical simulation of cavitating injector flow and liquid spray break-up by combination of Eulerian–Eulerian and volume-of-fluid methods. Comput Fluids 144:19–33Salvador FJ, Carreres M, Jaramillo D, Martínez-López J (2015) Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Convers Manag 103:284–299Salvador FJ, Martínez-López J, Romero JV, Roselló MD (2013) Study of the influence of the needle eccentricity on the internal flow in diesel injector nozzles by computational fluid dynamics calculations. Int J Comput Math 91, no. June:24–31Payri R, Salvador FJ, Carreres M, De la Morena J (Apr. 2016) Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Convers Manag 114:376–391Salvador FJ, Hoyas S, Novella R, Martinez-López J (2011) Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proc Inst Mech Eng Part-D-J Automob Eng 225(D4):545–563Satkoski C, Shaver G (2011) Piezoelectric fuel injection: pulse-to-pulse coupling and flow rate estimation. IEEE/ASME Trans Mechatron 16(4):627–642Ferrari A, Mittica A (2016) Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules. Appl Energy 169:899–911Payri R, Salvador FJ, Gimeno J, De la Morena J (2011) Analysis of diesel spray atomization by means of a near-nozzle field visualization technique. At Sprays 21(9):753–774Li T, Moon S, Sato K, Yokohata H (Feb. 2017) A comprehensive study on the factors affecting near-nozzle spray dynamics of multi-hole GDI injectors. Fuel 190:292–302Yu W, Yang W, Zhao F (2017) Investigation of internal nozzle flow, spray and combustion characteristics fueled with diesel, gasoline and wide distillation fuel (WDF) based on a piezoelectric injector and a direct injection compression ignition engine. Appl Therm Eng 114:905–920Salvador FJ, Carreres M, Crialesi-Esposito M, Plazas AH (2017) Determination of critical operating and geometrical parameters in diesel injectors through one dimensional modelling, design of experiments and an analysis of variance. Proc Inst Mech Eng Part D J Automob EngMacian V, Bermúdez V, Payri R, Gimeno J (2003) New technique for determination of internal geometry of a diesel nozzle with the use of silicone methodology. Exp Tech 27, no April:39–43Piano A, Millo F, Postrioti L, Biscontini G, Cavicchi A, and Pesce FC, (2016) “Numerical and experimental assessment of a solenoid common-rail injector operation with advanced injection strategies,” SAE Int J Engines 9(1)Mitroglou N, Lorenzi M, Santini M, Gavaises M (2016) Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows. Exp Fluids 57(11):1–14Kastengren AL, Tilocco FZ, Powell CF, Manin J, Pickett LM, Payri R, Bazyn T (2012) Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior. At Sprays 22(12):1011–1052Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–6

    Contact area determination of agricultural tractor wheel with soil

    Get PDF
    The study is established based on contact area determination of tractor wheel. The significance of contact area in domain of wheel-soil interactions is considerable. Requirement for contact area estimations has prompted the researchers to determine numerous theoretical models. In this study, an experimental test was conducted inside a soil bin facility providing entirely reliable and controlled condition for the test. The soil bin included a carriage, a single wheel-tester and a frame. The utilized tire was a towed Good year 9.5L-14, 6 radial ply agricultural tractor tire which is used in John Deere tractors This test has the advantage of utilizing images taken of the contact areas and subsequently, using a plantimeter to obtain the values of contact area precisely. Test variables were the two most prominent and influential parameters i.e. tire inflation pressure in three levels (i.e. 100, 150, and 290 kPa) and vertical load applied on wheel in three levels (i.e. 1962, 2943, and 3924 N). The acquired results revealed that there is an increase in contact area induced by increase of vertical load and decrease of contact pressure. Contact area is shown to be highly influenced by vertical load in reduced tire inflation pressures

    Investigating the effect of tractive parameters on imposed vertical stresses under driving wheel using a soil bin test rig facility

    No full text
    Introduction: Tire tractive parameters of the driving wheel are of the most substantial factors for the evaluation of the performance of agricultural tractors. Great tractive efficiency has called the attention of vehicle designers to attain economic efficiency owing to the minimization of fuel consumption. At terrain-tire interface, some soil physical-mechanical changes occur that lead to unwanted soil compaction. Of the influential parameters for the creation of soil compaction is the soil stresses formed owing to the wheeled vehicle trafficking. While the increase of tractive efficiency is desired, minimization of soil stresses should also be considered with the same importance to make a trade-off between the aforementioned parameters. There are numerous studies documented in the literature that deal with the measurement of soil stress/strain data due to the wheeled vehicle trafficking and also those works that address the correlation between the soil stress and soil compaction. It is recognized that in order to reduce soil compaction both at topsoil and subsoil levels, the soil stress at the soil-tire interface should be reduced. There are various parameters that affect the tractive efficiency and the soil stress creation such as wheel load, slip, tire inflation pressure, velocity, etc. On the other hand, the wheel is subjected to the torques and forces exerted to the vehicle and the vehicle dynamics are significantly affected by the soil-wheel interactions. Survey of the literature shows that numerous studies have focused on the evaluation of tractive efficiency both in field test and controlled conditions in laboratories with the intention of increasing tractive efficiency. The studies dedicated to the soil mechanical strength are more engaged with the approaches to minimize the soil stress propagation. The present study considers both factors and considers the most influential tire parameters such as wheel, velocity and slip to assess the relationship between traction and the soil vertical stress in a soil profile using a single-wheel tester and a soil bin facility. Materials and methods: The soil bin in Department of Mechanical Engineering of Urmia University was used in this study. This soil bin is featured 24 m in length, 2 m in width and 1 m in depth including a single-wheel tester and the carriage. A chain system was used for the power transmission from the electromotor to the carriage. The carriage was able to move alongside the soil bin through four ball bearings which also hold the weight of the carriage. The utilized tire in the study was a 220/65R21 driving wheel. One load cell was situated vertically to measure the wheel load and four S-shaped load cells were horizontally situated between the single-wheel tester and the carriage to measure the traction force. An electric motor was used to empower the carriage while another electric motor was used to empower the wheel tester. The difference between the linear velocities of the carriage and the wheel-tester provided the desired levels of slip. A housing including four load cells situated at the distances of 12.5 cm was used to measure the soil vertical stress transmission in the soil profile. The system was buried at the desired depth in the path of wheel traversal. Under the aforesaid treatments, the experiments were undertaken with the purpose of simultaneous measurement of soil stress propagation and traction force and finally the correlation between these parameters. Results and discussion: The results were analyzed using the statistical analysis at 1% significance level. The results showed that an increase in traction force leads to an increment of vertical soil stress. It was also recognized that the reduction in the velocity leads to the increase in soil stress which is due to the greater contact duration between the soil and the tire. Also, an increase in wheel load results in an increase of soil stress which has a linear correlation with the traction force. Furthermore, it was deduced that the increase in depth leads to a reduction of soil vertical stresses. Conclusions: The present study is aimed at investigating the effect of net traction force on the imposed vertical stress under the 220/65R21 driving wheel. Hence, velocity at three levels (i.e. 0.8, 1, 1.2 m s-1), wheel load at three levels (i.e. 2, 3, and 4 kN) and slippage at three levels (i.e. 8, 12, and 15%) were considered to obtain traction force and soil vertical stress at three depths of 0.1, 0.15 and 0.2 m. Experiments were carried out in the complete randomized block design with three replicates on clay loam soil at 12% moisture content. The vertical stress was measured using a manufactured soil stress transducer where the net traction was measured using four horizontally installed load cells between the tester rig and the carriage. A correlation was developed between soil stress and traction force. The results revealed that vertical stress increases with respect to increase of wheel load and slippage, whereas vertical stress decreases by increase in depth and velocity. Additionally, it was found that wheel load and slippage bring about increased traction force while velocity has no significant effect on traction force at 1% significance level. Finally, it was deduced that an increase of traction force results in an increase of vertical stress transmission

    A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains

    No full text
    This link contains a short video regarding the path-planning and path-following performance of the proposed algorithm in our paper "A novel optimal path planning and following algorithm for wheeled robots on deformable terrains" published by Journal of Terramechanics. A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains H. Taghavifar, S. Rakheja, G. Reina, A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains, Journal of Terramechanics, https://doi.org/10.1016/j.jterra.2020.12.00

    Determination of the super-elliptic shape of tire-soil contact area using image processing method

    Get PDF
    The present study is aimed at determination of the super-elliptic shape of tire-soil contact area using image processing method. Contact area has a substantial role on determination of soil compaction and tractive parameters of agricultural tractors. A very well-known model in this realm is to describe the contact area with superellipse geometry. A soil bin testing facility equipped with a single-wheel tester was utilized to conduct the needed experiments. The experiments were carried out at three levels of wheel load, three levels of tire inflation pressure with three replicates in a completely randomized block design. Corresponding images were taken for each of the experiments and the images were processed accordingly. The contact length and width were determined using imdistline command in MATLAB commercial software. This experiment was conducted at three levels of wheel load (2, 3, and 4 kN), and three levels of tire inflation pressure (100, 200, and 300 kPa) with three replications. The aforementioned parameters were applied consequently in the superellipse model and the contact area was computed. The obtained results disclosed that increase of wheel load increases the contact area. Contradictory, increment of tire inflation pressure reduces the formed contact area. Additionally, the potential of contact area determination with the proposed model was compared with that of actual values, which denoted coefficient of determination equal to 0.96, which shows the promising ability of the proposed model and the appropriateness of describing contact area with superellipse geometry

    Design of a combined power, heating and cooling system at sized and undersized configurations for a reference building: Technoeconomic and topological considerations in Iran and Italy

    No full text
    The objective of the present paper is sizing of a technically optimum and economically feasible cogeneration system to supply heating, cooling and electricity to a reference building in the city of Pisa, Italy, for different months of the year. This cogeneration system is proposed in two operational modes, sized and under-sized, so that the effect of natural gas and electricity consumption costs on the system design can be achieved. To this end, the amount of energy consumption and cost of various types of the proposed cogeneration systems based on reciprocating engines are computed and compared. Afterward, in the proposed systems, for understanding the effect of the costs of the energy carriers in different countries on the rate of payback period, a comparison is conducted on the payback period between Iran and Italy. In the end, a sensitivity analysis is performed in Iran and Italy to survey the effect of any change in the cost of investment, natural gas, and electricity on the payback period. The results indicated that although the costs of gas and electricity are comparatively lower, the payback period is longer for Iran, which can be blamed on Iran’s higher discount rate (~50%). The results of sensitivity analysis showed that if the natural gas cost in Italy equals that of Iran, there would be a 6.4% reduction in the payback period and if the electricity cost consumption in Iran is taken equivalent to the cost of electricity in Italy, a decrease of 25% will appear in the payback period
    • …
    corecore