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Abstract: The selected motions of autonomous vehicles (AVs) are subject to the constraints 

from the surrounding traffic environment, infrastructure and the vehicle’s dynamic capabilities. 

Normally, the motion control of the vehicle is composed of trajectory planning and trajectory 

following according to the surrounding risk factors, the vehicles’ capabilities as well as 
tyre/road interaction situations. However, pure trajectory following with a unique path may 

make the motion control of the vehicle be too careful and cautious with a large amount of 

steering effort. To follow a planned trajectory, the AVs with the traditional path-following 

control algorithms will correct their states even if the vehicles have only a slight deviation from 

the desired path or the vehicle detects static infrastructure like roadside trees. In this case, the 

safety of the AVs can be guaranteed to some degree, but the comfort and sense of hazards for 

the drivers are ignored, and sometimes the AVs have unusual motion behaviours which may 

not be acceptable to other road users. To solve this problem, this study aims to develop a safety 

corridor-based vehicle motion control approach by investigating human-driven vehicle 

behaviour and the vehicle’s dynamic capabilities. The safety corridor is derived by the 

manoeuvring action feedback of actual drivers as collected in a driving simulator when 

presented with surrounding risk elements and enables the AVs to have safe trajectories within 

it. A corridor-based Nonlinear Model Predictive Control (NMPC) has been developed which 

controls the vehicle state to achieve a smooth and comfortable trajectory while applying 

trajectory constraints using the safety corridor. The safety corridor and motion controller are 

assessed using four typical scenarios to show that the vehicle has a human-like or human-

oriented behaviour which is expected to be more acceptable for both drivers and other road 

users.  
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1. Introduction 

Vehicle motion planning and trajectory following for automated vehicles is subject to the 

vehicle dynamic performance, surrounding environments, and road surface conditions. The 

risk factors resulting from the static and dynamic elements include the surrounding 

infrastructure and the dynamic properties of other road users.  Current approaches of the 

vehicle’s control and execution are to plan the motions of the vehicles with the detected road 

information and follow the desired trajectories. The safety aspect of AVs has been greatly 

focused on avoiding static obstacles, moving pedestrians and other road vehicles when the 

sensor system has detected the relevant surrounding environment. However, comfort and 

reliability of the vehicles should not be ignored as they are also important for the future 

development of AVs because of their benefits for the drivers and other road users. Existing 

motion planning and trajectory following algorithms rarely consider the comfort and sense of 

security and confidence for the drivers and passengers in the AVs, which may lead to a nervous 

experience for them. Pure motion planning and trajectory following may make the behaviour 

of the AVs be unusual and confused for other human-driven vehicles and other road users, and 

thus lead to traffic jams and accidents. Therefore, it is necessary and urgent to rethink and 

reconsider the motion planning and trajectory following solutions. 

For vehicle motion control algorithm development, one of the most important factors to be 

considered is the vehicle’s own capability. Substantial research has been conducted on motion 

planning and trajectory tracking for robots and unmanned aerial vehicles, but the vehicles’ 
motion planning and execution is still a challenge because of the lack of consideration of the 

vehicle dynamic capacities and varying environment elements. A vehicle’s motion capacity is 
not only limited by the external environment, but also determined by the vehicle’s dynamic 

capabilities such as stability requirement, electrical control system characteristics, and 

tyre/road interaction adhesion capability, which is dynamically changing in different road 

surfaces.  

The motion planning models for road vehicles are normally developed on the basis of the 

path planning in mobile robotics and modified with consideration of the challenges of road 

information and driving rules. As one of the path planning techniques, a collision avoidance 

system is used to generate a desired trajectory to avoid obstacles by considering the spatial and 

geometric characteristics of the obstacles as well as the mobile robots’ kinematic properties 
(Rashid et al., 2013). According to the implementation of the motion planning techniques in 

autonomous driving, the planning approaches can be classified into four categories: Graph 

search based plan (Ferguson et al., 2008; Kala and Warwick, 2013), Sampling based plan 

(Jeong hwan et al., 2013; Karaman et al., 2011; Kuwata et al., 2009), Interpolating curve plan 

(Berglund et al., 2010; Chu et al., 2012; González et al., 2014; Wenda et al., 2012) and 

numerical optimization approach (Ziegler et al., 2014). To involve the vehicle constraints, 

speed and comfort elements, recent demonstrations have used optimal polynomial curves in 

terms of smoothness to deal with real implementations (González et al., 2016). However, due 

to the complex and fluctuating dynamic environment elements such as pedestrians, cyclists and 

other vehicles, collision free trajectory generation within a limited time is still a challenge. 

Moreover, multiple constraints ranging from the vehicle dynamic limitations and passengers’ 
comfort are necessary and challenging for the vehicle motion planning to generate smooth and 

achievable trajectories (González et al., 2016).  

Vehicle dynamic properties particular for tyre/road interaction situation are normally 

considered as one of the vehicle kinematic properties. Due to the varying road conditions such 



as road unevenness and friction coefficient, the vehicle’s stability limitations and adhesion 
limitation will be changing in real time and make the vehicle motion planning more challenging. 

To make sure the vehicle can have a smooth motion, some objectives such as minimization of 

acceleration or jerk is normally considered by using trajectory polynomial, but tyre/road 

interaction variation effect on the longitudinal and lateral behaviour of vehicles are ignored 

frequently in order to simplify the calculation of the trajectory planning (Ntousakis et al., 2016). 

These simplifications may make the applicability and feasibility of the path following to be 

limited. In the past decades, many tyre models have been developed for model-based design 

and vehicle controller design (Wei et al., 2016; Wei et al., 2017). The friction coefficient, the 

lateral velocity of the vehicle and the vertical load affect the lateral tyre force, and the linear 

district of the tyre/road interaction are varying for different road types (Du et al., 2011; Wei 

and Olatunbosun, 2016). To simplify the vehicle motion control with complex tyre/road 

interaction and guarantee the vehicle’s stability, the tyre slip angle is normally limited into its 

linear range (Ji et al., 2017).   

For the trajectory or path tracking of AVs or mobile robots, the commonly used methods 

are sliding-mode control (Hu et al., 2016b), robust control (Hu et al., 2016a) and fuzzy logic 

(Antonelli et al., 2007). However, many of the vehicles’ dynamic limitations, particularly 

nonlinear characteristics, have been ignored in these controllers to simplify the vehicle control 

system and increase the efficiency of calculation (Ji et al., 2017). Moreover, pure path tracking 

of AVs rarely consider the drivers’ or other road users’ sense of risk elements. The drivers in 
the AVs not only want the vehicles to avoid the collisions but also keep a suitable distance 

from the risk elements even if the risk element is a road kerb or grass. Due to the uncertainties 

during the vehicle control, even the straight road has the potential to lead to a collision between 

the vehicle and the road edge. Boer (Boer, 2016) proposed a theoretical time to line crossing 

(TLC) model to capture the risk for both straight road and curved road as a function of 

environment and driver skill factors, and the drivers’ lateral offset tolerance were analytically 
obtained. Boer’s model demonstrates that it is necessary to consider the drivers’ sense of 
security and confidence during vehicle motion control.  

A new approach to vehicle motion planning and trajectory tracking is to involve the human 

driver into the procedure. Compared to the robotic calculation of the planned trajectory, human-

driven vehicles follow a trajectory that is planned by considering the drivers and the passengers’ 
feelings, including both the physiological comfort and the psychological comfort. However, it 

is difficult to realize this with a unique planned path due to the complexity of human drivers’ 
behaviour, and few driver models within the motion planning and trajectory following have 

quantitatively considered driver behaviour (Wu et al., 2014). Gu et al. (Gu et al., 2016) 

developed a human-like planning approach that is capable of learning passengers’ individual 
driving styles, but it demonstrated a relatively large behaviour discrepancy due to the lack of 

human driver properties stochastics. Drivers’ volition in terms of time to line crossing and time 
to collision, for both straight road and curved road, affect main factors that affect the risk levels 

assessed by drivers or passengers (Wu et al., 2014). 

Therefore, to plan the vehicles’ motion, like a human-driver, requires the identification of 

characteristics of natural driving and risk factors which influence driver behaviour. The human 

drivers’ may have an imaginary trajectory planned by themselves during their driving, but they 

will not attempt to shrink the error between the vehicles’ states and the planned trajectory as 
long as the vehicles’ states are limited to a safe and comfortable environment, which is different 
from the traditional path following approaches. The traditional path following approach always 



tends to correct the error between the planned trajectory and the vehicles’ current states, which 
make the autonomous driving of the vehicles be unusual and too cautious. For the human-

driven vehicles, when the vehicles deviate from the drivers’ imaginary trajectory because of 

the uncertainties of vehicle system or the road, the drivers normally keep the vehicles’ status 
at that moment and choose another suitable trajectory. This means a flexible space of available 

trajectories is needed for AVs if we consider the sense of the drivers, and the AVs’ movement 
can be limited to the space that avoids the potential risk elements.  

To this end, this study aims to build a risk-based corridor, rather than planning a unique path, 

based on the environmental risk elements and the vehicle’s dynamic properties, where drivers’ 
behaviour are considered. Within the corridor, vehicle motion control algorithms are developed 

to make sure the AVs can provide a smooth and comfortable movement for the drivers. As a 

dynamic optimization control algorithm, Model Predictive Control (MPC) is an advantageous 

approach for dealing with nonlinear dynamic problems with multiple constraints. Moreover, 

one of the characteristics of MPC is rolling-horizon optimization, so it can overcome the 

influence of environment disturbances. Considering the vehicles’ nonlinear dynamics and 
human drivers’ sense of confidence, this study develops a Nonlinear Model Predictive Control 

(NMPC) algorithm to make the autonomous driving of the vehicles be more comfortable and 

natural. 

2. Human-like vehicle control framework 

The proposed human-like control algorithm aims to develop a vehicle dynamic controller 

on the basis of human driver behaviour when interacting with environment risks. The 

framework of the control algorithm is shown in Figure 1. When the road information has been 

detected, the human driver will react to the existing and potential risks through modifying the 

steer angle and the speed of the vehicle. By testing different driver behaviour for the same road 

information, it is able to conduct an estimation of the range of the speeds, lateral offset, gaps, 

and vehicle’s heading angle and acceleration that drivers can accept around environment 

elements in the scene. Hence, a risk-based corridor (or risk model) is established to restrict the 

vehicle’s motion. The risk-based corridor due to the environmental risk elements can be  

constraints on vehicle velocity, lateral offset and yaw rate etc. It is noted that the risk-based 

corridor is not only determined by the road information directly but also determined by the 

sense of the drivers in AVs. Therefore, the corridor can be derived by the investigation of the 

drivers’ manoeuvring actions, i.e. speed control, steering angle and steering speed control, 

when detecting the environmental risk elements such as obstacles, road edges, and other road 

vehicles. With the derived corridor, the safety and sense of security for the drivers or the 

passengers can be guaranteed by setting the corresponding constraints. 

     Another corridor that is necessary to be considered is the envelope of the vehicle’s dynamic 
characteristics. Due to the complex properties of the interaction between tyre and road, many 

studies have been carried out to investigate the nonlinear properties of the tyre, particularly on 

severe conditions. The constraints, for the vehicle dynamic controller, not only include the risk 

factors because of the road information, but also the vehicles’ kinematic capabilities and 
tyre/road interaction limitations. The primary objective of AVs is to guarantee safety which is 

normally initially ensured by staying within the vehicle’s stability and tyre/road adhesion 
envelop. Both the longitudinal and lateral motions of the vehicle are subject to the tyre/road 

interaction and they affect each other. Moreover, as a mechanical system with an active control 

chassis, the vehicle’s motion is also limited by the mechanical properties and electrical control 



system characteristics. Thus, the definition of the envelope of vehicle dynamic properties is 

necessary to guarantee the vehicle’s stability. 
     Within the risk-based corridor and vehicle dynamic corridor, the vehicle’s motion can be 
limited to a safety horizon. To have a natural and comfortable driving feeling for the passengers, 

the human drivers may expect the vehicle motion be smooth and relaxed, which means the 

vehicle states variation should not be large while the perception and reaction to static and 

dynamic risk elements should be appropriate. Hence, the human-driver’s behaviour is also used 

to optimize the vehicle kinematic behaviour to guarantee a natural feeling of driving. 

  

 

Figure 1   Framework of human-like control algorithm 

3. Risk-based lateral offset boundary generation 

The safety corridor is based on the analysis of interactions between human drivers and 

different road environments including the straight and curved roads with grass or kerbs at the 

roadside, obstacles like parked cars and pedestrians outside or inside the road, and other 

moving vehicles. With the perception of the environmental risk elements, a virtual risk 

boundary in terms of acceptable lateral offset, speed and yaw rate can be generated according 

to the drivers’ action feedbacks and the risk levels of the environment elements, as shown in 

Figure 2. It is not difficult to understand that the walking pedestrian at the side of the road 

produces a higher level of perceived risk by the driver than the trees located at the side of the 

road, so the lateral gap between the risk boundary and the kerb for the pedestrian should be 

larger than that for the tree. The lateral position boundary (risk boundary in Figure 2) for the 

AV moving is just one of the factors to form the risk-based corridor, and it also includes the 

lateral acceleration range, the longitudinal velocity variation range and the vehicle’s yaw angle 

limitation. These factors can be well derived through the measurement of the human drivers’ 
behaviour using a driving simulator. In this way, a risk-based corridor can be generated as a 

function of the longitudinal position on the path, the lateral offset, the longitudinal velocity and 

acceleration and the yaw angle of the vehicle. In this study, only acceptable lateral offsets are 

used for the following vehicle motion controller development, and other vehicle states 

tolerance derivation will be investigated and considered in future studies. 



 

Figure 2     The generation of the risk-based corridor 

The University of Leeds Driving Simulator (UoLDS, Figure 3 ) was employed to evaluate 

the effect of the perception of environmental risk elements on driving performance, and thus 

the derivation of the risk-based tolerance such as acceptable lateral offset and desired speed. 

The simulator system collects data ranging from the vehicle states (position, speed, acceleration, 

etc.) that result from the drivers’ performance, other AVs’ states in the scene and other data 

relating to drivers’ behaviour.   
 

 

Figure 3   Illustration of the driver simulator for collecting driving data of vehicles and drivers 

A total of 44 participants between the age of 18 to 65 years participated in the driving 

simulation experiment. Each subject drove all of the designed scenarios which involved 

different roadway environments, roadway geometry, roadside context, and traffic condition. 

Participants also drove a 20-minute practice drive before the two 40-45 minutes sessions during 

which data was collected. The purpose of the practice drive was for the participants to get 

familiar with the simulator and the driving environment. 



The vehicle data was collected at 60 Hz and included the speed and lateral position of the 

vehicle. The offset from the centre of the travel lane is calculated from the lateral position at 

each time step and is aggregated for all the drivers for each road segment with a constant risk 

(i.e. specific roadway environment, roadside context, roadway geometry, and traffic 

condition). Four different road conditions were tested and the lateral offset data of the 

vehicles for these scenarios were collected and are shown in Figure 4. The 5th and 95th 

percentile of the lateral offset is then calculated for each segment and is assumed as the left 

most and right most edge of the comfortable driving corridor for the average drivers.  This 

corridor is assumed to have the acceptable risk for the average drivers. In other words, any 

point on the roadway that is outside this corridor is assumed to have a risk level higher than 

the acceptable risk threshold and is not accepted by the average of the drivers. The derived 

acceptable lateral offsets for different road types are illustrated in  

Table 1. With the derived risk-based lateral offset tolerance for the typical road types, the 

constraint in terms of lateral offset for the curved road with the similar radius and roadside can 

be obtained by finding the corresponding acceptable lateral offsets. 

 

 

Figure 4 Distribution of measured vehicle lateral offsets for different drivers at the scenarios: a) 

straight asphalt road, b) straight road with parked cars at the roadside, c) Right curve road with a radius 

of 170 m and grass at the side of the road d) Left curve road with a radius of 170 m and asphalt at the 

side of the road  
 

Table 1 Derived acceptable lateral offset at different scenarios based on the driving tests 



 

4. Vehicle dynamic model for the MPC 

In this study, the vehicle dynamic model used for controller design is simplified to a 

kinematic bicycle model which is normally used for vehicle motion planning and path tracking 

as the suspension movement and rolling resistance influences are neglected. Figure 5 shows 

the kinematic bicycle model in the global coordinate system and the deviation description 

relative to the road centre line path. We use the distance between the road centre line and the 

C.G. of the vehicle to define the deviation of the vehicle on the path, as shown in Figure 5(b). 

 

Figure 5    Simplified vehicle dynamic model for system prediction within MPC: (a) kinematic bicycle 

model in the global coordinate system, (b) kinematic bicycle model to describe the path deviation 

In this case, the differential equations of the vehicle’s motion in terms of lateral movement

y , longitudinal movement x , yaw rate of the vehicle body 𝜓̇ and orthogonal distance ye , the 

difference between the heading angle of the road and the heading angle of the vehicle e  can 

be given as                                                                 
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where R is the curve radius in real time, and it is set to 9999 for a straight road. 𝐼𝑧 and 𝑚 

represent the vehicle’s yaw inertia and mass, respectively.  𝑥̇ and 𝑦̇ denote the longitudinal and 

lateral speeds in the body frame and   denotes the yaw rate. 𝐹𝑦𝑓 , 𝐹𝑥𝑓, 𝐹𝑦𝑟 and 𝐹𝑥𝑟 represent 

the lateral and longitudinal tyre forces at the front and rear wheels, in coordinate frames aligned 

with the wheels. The slip angle of the front and rear tyre is given as  
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For small tyre slip angles, the lateral tyre forces are normally defined as linearly proportional 

to the slip angle, which can be expressed as  

yf f fF c    (10) 

yr r rF c   (11) 

The generation of the road can be conducted with the curvature of the road  at any distance, 

and the heading of the road at the corresponding distance position. The heading of the road 

e and the global coordinate  ,r rX Y along the path can be derived by 
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where 0e and  0 0,r rX Y are the initial heading and position of the road curve in the globe 

coordinate system.  

Selecting global lateral position, longitudinal position, yaw angle, yaw rate, vehicle lateral 

deviation as output, state space equation of the system can be expressed as  
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It is noted that only the front steering angle is considered as the input in this model, and the 

velocity of the vehicle is kept constant in time domain. In this case, the longitudinal slip inputs 

can be ignored. The above state space equations of the vehicle system are continuous-time and 

cannot be used for the design of MPC algorithms directly. Thus, the model of the system is 

converted to a discrete state-space model by discretizing the state-space equations. The Euler 

method is used to discretize the state-space model with a sample time of 𝑇𝑠 , then the system 

can be described in discrete form 

     1d d d dX k A X k B u k    (18) 

   d d dY k C X k  (19) 

 

where 𝐴𝑑 ,  𝐵𝑑  and  𝐶𝑑  are the discrete matrices for the state-space equation, respectively, 

which can be obtained by 
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5. Controller design 

5.1 Prediction of vehicle states and output variables 

One important property of MPC is receding horizon optimization, and the prediction of the 

vehicle’s states and output variables is important to determine the control inputs within a 

specified horizon. Based on this prediction, the specified performance index at each time 𝑡 is 

optimised under operating constraints in order for the optimal manoeuvring action inputs to be 

determined.  

The first of such optimal action is the control input applied to the vehicle system at time  𝑘, 

and at time 𝑘 + 1, a new optimization is obtained over a shifted prediction horizon. The 

prediction horizon of the system is defined as 𝑁𝑝 , and the control horizon is 𝑁𝑐 , the state 

vector 𝑋𝑝(𝑘 + 𝑖, 𝑘) and the control input vector∆𝑢(𝑘 + 𝑖, 𝑘) are replaced by 𝑋𝑝(𝑘 + 𝑖) and ∆𝑢(𝑘 + 𝑖, 𝑘) respectively. Thus, the vehicle states and the vehicle system’s output variables in 
the prediction horizon can be calculated as follows: 
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(23) 

 

As in standard MPC schemes, the prediction horizon 𝑁𝑝 is larger than the specified control 

horizon 𝑁𝑐, and it is assumed that the control inputs are kept constant for all c pN k N  i.e. ∆𝑢(𝑘 + 𝑖) = 0, ∀ 𝑖 ≥ 𝑁𝑐 . The sequence of the input increments derived at time 𝑘  can be 

written as 
T[ ( ), ( 1),..., ( 1)]k cU u k u k u k N         (24) 

Therefore, the output vector predicted at time k  can be expressed as 

( ) ( )p p p p kY k Ψ k Θ UX    (25) 
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5.2 Optimization 

The control input increments are derived through comparison between the desired vehicle 

motion parameters and the predicted output variables. At each time step, the controller solves 

a convex optimization problem to find an optimal sequence of increments of front steering 

angle input. Unlike the traditional optimal method, we don’t want the vehicle’s path to exactly 

follow a planned path or the lane centre line, in order that the cautious motion of the vehicle 

can be avoided. In this study, the design of the cost function is required to be able to guarantee 

the vehicle runs smoothly and comfortably within the lateral tolerance derived by the risk 

model. To this end, both vehicle states error relative to desired vehicle motion and the control 

input need to be optimized, and the cost function can be written as min∆𝑈(𝑡)    𝐽(𝑋𝑝(𝑘),  ∆𝑈(𝑘)) = ∑‖𝑌𝑝(𝑘 + 𝑖) − 𝑌𝑑(𝑘 + 𝑖)‖𝑄2
𝑁𝑝
𝑖=1 + ∑ ‖∆𝑢𝑘+𝑖‖𝑅2 + 𝜌𝜀2𝑁𝑐−1

𝑖=1  (28) 

 

where the first summand reflects the desired performance on vehicle state tracking and the 

second is a measure of the steering effort.  represents the weight coefficient,  is the 

relaxation factor and Q  and R are weighting matrices of appropriate dimensions.  Due to the 

complexity of the system and the multi-constraints, the involvement of a slack variable is 

needed and will avoid the circumstance that the system cannot get the optimal solution within 

the calculation time. In this study, the slack variable is associated to the tyre slip angles where 

soft constraints are defined to force the vehicle to operate within the linearity region of the tyre 

lateral dynamic behaviour.  

To have a natural and comfortable driving experience for the drivers, we don’t force the 
vehicle to exactly follow the centre line of the lane and the heading angle of the road. On the 

other hand, we allow the vehicle to have a more flexible motion within the obtained lateral 

offset corridor, and minimum yaw rate and minimum lateral velocity are taken as objects to 

optimise vehicle’s comfortability, which align with human preference, i.e. they are not willing 

to yaw or move side to side frequently. 

 



5.3 Vehicle dynamic constraints 

To guarantee the vehicle’s safety and stability, the safety corridor should consider the 

vehicle’s dynamic performance and limit the vehicle’s states into its dynamic envelop. This 

requires the application of the following constraints. 

1. Vehicle stability  

To guarantee the stability of the vehicle, it is necessary to apply constraints to the side-slip 

angle of the vehicle and the yaw rate. The limitation on the slip-angle is different for road 

surfaces with different adhesion characteristics, and the constraint for the side-slip angle is to 

prevent the vehicle approaching the adhesion limit. Similarly, it is also needed to constrain the 

yaw rate of the vehicle to stay in a safe range of the vehicle’s dynamic states. Hence, the 
constraints of the side-slip angle and the yaw rate of the vehicle can be expressed as 

max , mink i t     (29) 

max , mink i t     (30) 

2. Vehicle’s adhesion 

Due to the tyre/road adhesion capability, the vehicle acceleration is bounded by the constant 𝜇𝑔, where 𝜇 is the tyre/road friction coefficient and 𝑔 is the gravitational acceleration. Thus, 

the vehicle’s acceleration is subject to the following constraint: 

2 2

x y ga a    (31) 

In this study, constant speed is adopted, and thus the acceleration constraint can be reduced 

to 

ya g  (32) 

3. Vehicle’s control and execution capability  
As a mechanical system equipped with chassis active control systems, the vehicle’s motion 

is limited by the vehicle’s mechanical properties and electrical control system characteristics, 

which lead to the limits on the velocity control and the steering angle control. To make the 

vehicle’s motion be smooth and safe, the vehicle’s steering angle and their variations are 

constrained by 𝛿𝑓𝑚𝑖𝑛 ≤ 𝛿𝑓𝑘+𝑖,𝑡 ≤ 𝛿𝑓𝑚𝑎𝑥 (33) ∆𝛿𝑓𝑚𝑖𝑛 ≤ ∆𝛿𝑓𝑘+𝑖,𝑡 ≤ ∆𝛿𝑓𝑚𝑎𝑥 (34) 

4. Tyre’s slip angle limitation 

The tyre’s slip angle cannot be obtained directly from the vehicle’s dynamic output as it has 
not been defined as a vehicle state, but it can be calculated with linearization based on the 

vehicle’s output values (see eq.7 and eq.8).  
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,i
iD i f r

u



 


 (36) 

Therefore, the output of the slip angle can be expressed by the vehicle’s states 

 

,i i s iC X D u i f r      (37) 



To avoid the tyre’s large slip at some severe conditions, we use the following limits on the 

front and the rear tyre’s slip angle to make sure the relationship between the tyre lateral force 

and the slip angle is limited to the linear range 

min , maxf k i         (38) 

With the above constraints, the stability of the closed loop system can be maintained. Since 

the linear range of the relationship between lateral force and slip angle is maintained, the 

dynamic system is unable to enter into the possibly unstable region of the tyre characteristic.   

In order to make the autonomous driving of the vehicles be natural and comfortable within 

the blended corridors obtained from environment risk elements and the vehicles’ dynamic 

capabilities described above, the human-like autonomous driving problem can be described by 

the following optimization problem    

min∆𝑈(𝑡)    𝐽(𝜉𝑡,  ∆𝑈(𝑡)) = ∑‖𝑌𝑘+𝑖,𝑡 − 𝑌𝑘+𝑖,𝑡𝑟𝑒𝑓 ‖𝑄2
𝑁𝑝
𝑖=1 + ∑ ‖∆𝑢𝑘+𝑖,𝑡‖𝑅2 + 𝜌𝜀2𝑁𝑐−1

𝑖=1  

 

(39) 

𝑠. 𝑡.   𝑋𝑑 (𝑘 + 𝑖 + 1) =  𝐴𝑑𝑋𝑑(𝑘 + 𝑖) + 𝐵𝑑𝑢(𝑘 + 𝑖 ), 𝑖 = 0,1, … , 𝑁𝑝 − 1 𝑌𝑑(𝑘 + 𝑖 + 1) = 𝐶𝑑𝑋𝑑(𝑘 + 𝑖), 𝑖 = 0,1, … , 𝑁𝑝 − 1 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘+𝑖,𝑡 ≤ 𝑢𝑚𝑎𝑥  , 𝑖 = 0,1, … , 𝑁𝑐 − 1  ∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢𝑘+𝑖,𝑡 ≤ ∆𝑢𝑚𝑎𝑥 , 𝑖 = 0,1, … , 𝑁𝑐 − 1      𝑌𝑚𝑖𝑛 − 𝜀 ≤ 𝑌𝑑(𝑘 + 𝑖 + 1) ≤ 𝑌𝑚𝑎𝑥 + 𝜀 ,    𝑖 = 1,2 … , 𝑁𝑝 𝑌𝑟𝑚𝑖𝑛 ≤ 𝑌𝑟(𝑘 + 𝑖 + 1) ≤ 𝑌𝑟𝑚𝑎𝑥 ,      𝑖 = 1,2 … , 𝑁𝑝 

 

(40) 

It is noted that cost function of the vehicle dynamic controller can be designed according to 

the human driver’s behaviour, which can be the minimum jerk of the vehicle, the minimum 

yaw angle deviation or the minimum lateral deviation of the vehicle. The constraint 𝑌𝑚𝑖𝑛 −𝜀 ≤ 𝑌𝑑(𝑘 + 𝑖 + 1) ≤ 𝑌𝑚𝑎𝑥 + 𝜀 represents the limits of vehicle’s states and other outputs that 

can be expressed by the vehicle’s states, which include the vehicle’s limits of lateral position, 
lateral acceleration, longitudinal speed, yaw rate, side slip angle and the tyres’ slip angle. 𝑌𝑟𝑚𝑖𝑛 ≤ 𝑌𝑟(𝑘 + 𝑖 + 1) ≤ 𝑌𝑟𝑚𝑎𝑥  denotes the risk-based corridor obtained from the human 

driving tests and the derived risk model expressed by the vehicle’s states.  

The optimal control problem describe by Eq.10 and Eq.11 can be transferred into a quadratic 

programming (QP) problem by the MPC solution procedure, in which way the optimisation 

vector U , i.e. the sequence of the input increments ( ), ( 1),..., ( 1)cu k u k u k N      can be 

calculated. Therefore, transferring the cost function Eq. 39 and the constraints Eq. 40 into the 

standard QP problem, we get 

 𝐽(𝜉𝑡 ,  ∆𝑼(𝑡)) = ∆𝑼(𝑡)T𝑯𝑡∆𝑼(𝑡) + 𝑮𝑡∆𝑼(𝑡)T 

                 s. t.                ∆𝑼𝑚𝑖𝑛 ≤ ∆𝑼𝑡 ≤ ∆𝑼𝑚𝑎𝑥                                                  (40) 

                                                         𝑼𝑚𝑖𝑛 ≤  𝑨∆𝑼𝑡 + 𝑼𝑡 ≤  𝑼𝑚𝑎𝑥  
where 𝑯𝑡 and 𝑮𝑡 are the coefficients of the transferred QP problem.  It is noted that only the first 

element of the control input series is adopted to the vehicle system at the current step, and then 

repeat this procedure at the next period.  

6. Results and discussion 



     The traditional 2-dof nonlinear vehicle model is used in this study to represent the vehicle 

model illustrated in Fig.2. It has been shown that the bicycle vehicle model have agree well 

with the more complex 14 dof vehicle model, particularly for the non-severe scenarios (Na et 

al., 2015). Therefore, we used the 2 dof nonlinear vehicle model to represent the vehicle 

system that need to be controlled. The vehicle’s parameters used in the simulation are shown 

in Table 2. The controller parameters used for the simulation are:  
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 and the 

boundary here represents the lateral offset boundary. 

     The steering angle has been constrained within the interval o o10 10f   , and the 

steering rate has been constrained to o o0.85 0.85f    . According to the tyre’s properties 

(Wei and Olatunbosun, 2014), the controller implicitly limits the front tyre slip angle into its 

linear interval o o[ 3 ,3 ] . 

      The model parameters of the vehicle in the simulation are given in Table 2.  

Table 2 Vehicle model parameters 

Parameter Description Value 

m  Total vehicle mass 1723 kg 

zI  Yaw moment of inertia 4175 kg 

a  C.G. distance to front wheels 1.23 m 

b  C.G. distance to rear wheels 1.47 m 

fC  Cornering stiffness of the front tyre  𝟔. 𝟔𝟗 × 𝟏𝟎𝟓 N/rad 

rC  Cornering stiffness of the rear tyre  𝟔. 𝟐𝟕 × 𝟏𝟎𝟓 N/rad 

v  Velocity of the vehicle 10 m/s 
 

To identify and estimate the predicted vehicle’s trajectory within the risk-based corridor, 

four typical scenarios are defined and the acceptable lateral offsets within these scenarios are 

subject to the risk elements.  

     Scenario A: A J-turn curve is defined by involving two straight sections and one curve 

section with a curve radius of 50m, as shown in Figure 6. The J-turn curve starts from a straight 

section with a distance of 150m, followed by the 60m long arc curve and ended by a straight 

road section. Figure 6 shows the comparison between the centre line of the road and the 

vehicle’s trajectory. Traditional path following motion control algorithms normally enable the 

vehicle to closely follow the centre line of the road if there is no obstacle or other dynamic risk 

element on the road. However, this leads to an anxiety for the drivers on the AVs as the steering 

manoeuvring action to follow the centre line of the curve is a little late compared to the natural 



path taken by drivers. With the proposed vehicle motion controller, the vehicle follows the 

centre line of the road during the straight section and steers 20m ahead of the starting position 

of the curved section rather than exactly following the curve, after which the vehicle moves 

back to the centre of the road at the final straight road section.  

 

Figure 6   Simulation results for the J-turn scenario 

Scenario B: For this scenario, a 300m straight road is defined by involving a short curve at 

the 100m position, as shown in Figure 7. The vehicle’s velocity is set as 10km/h and the road 

width is 3.66m with only one lane. With the proposed vehicle motion controller, the vehicle is 

able to travel within the risk-based acceptable lateral offset. Due to traditional path planning 

and path following limitations mentioned above, we prefer to derive the risk-based corridor 

and make the AVs occupants have a comfortable and relaxed traveling experience for the 

drivers. Traditional path following vehicle controls normally choose the centre line of the road 

to follow and thus leads to a sharp cornering at the 100m position of this scenario. This 

behaviour of the AVs will make the drivers and the passengers feel strange and uncomfortable 

even though they do not affect the safety significantly. Different from the traditional path 

following solution schemes, the proposed controller enables the vehicle to have a nearly 

straight run at the straight road condition, and only have a slight steering variation at the sharp 

curve section area within the 300m straight road. It is noted that after the vehicle passes the 

short curve area it does not go back to the centre line of the road, which is different from the 

traditional path following control algorithms that force the vehicles to follow the centre line or 

the planed path. With the proposed control algorithm, the vehicle is allowed to travel in an 

acceptable lateral position and be parallel to the road centre line when it passes the sharp curve 

area, which aligns with the drivers’ behaviour in practice. 



 

Figure 7   Simulation results for the straight road scenario with a short-curve 

Scenario C: This scenario is defined by a double lane change section followed by a J-turn 

section and a straight road section, and the road has a width of 3.65 m, as shown in Figure 8. 

Note that the curved road sections within the full defined road have a radius of 170 m, which 

is the same as the radius of the experimental data. If the curved road is a left direction curve 

with a radius of 170 m, we consider it has an acceptable lateral offset of [-0.7327m, 0.4138m], 

while we consider the curved road to the right has an acceptable lateral offset of [-0.2342m, 

0.7492m]. For the straight section of the road, we assume the acceptable lateral offset of the 

vehicle is [-0.2983m, 0.5071m]. Within the acceptable lateral offset, the safety of the 

autonomous driving can be guaranteed, which means the collision problems can be avoided. 

However, for some sharp curved sections, the drivers may feel very nervous when the AVs 

cannot steer in a timely fashion, i.e. following the centre line of the road. The vehicle’s 
trajectory obtained with the proposed MPC algorithm enables the vehicle to steer early enough 

when it encounters a sharp curve section, see the highlight parts with the blue ellipses. When 

the vehicle returns to the straight road after having passed the curved road it keeps the vehicle 

heading direction the same as the road’s direction but does not return to the centre line of the 
road, which aligns with the driving experience of the human driver. 

 



 

Figure 8    Simulation results for the Scenario C 

Scenario D: For this scenario, the vehicle runs on a straight road with a parked car at the 

side of the road. Similar with the parked car setting in the driver simulator, 0.35 m width of the 

parking car is outside of the road and 1.45m of it is inside of the road, as shown in Figure 9. 

Considering the length of the host vehicle, the width of the obstacle length covering the parking 

car’s length (4 m) is setting as 10 m. According to the statistical test data, the acceptable lateral 

offset at the parked car area is  [0.99m, 1.97m], while the acceptable lateral offset for the 

straight road without obstacles is [-0.30m,0.50m]. The transition section between the two 

different acceptable lateral offsets is defined with the linearly varied curves at both the front 

and the rear of the parked car. The simulated vehicle trajectory within the derived lateral offset 

tolerance is shown in Figure 9. With the proposed controller and the derived risk-based corridor, 

the vehicle’s trajectory can be limited in the corridor and has a smooth path. The vehicle starts 

to avoid the obstacle about 20m ahead, and slowly moves to the direction of the centre line 

when it passes the obstacle area. The simulation results also show that the vehicle tends to 

move in parallel with the road heading direction when it passes the obstacle and keeps traveling 

within the acceptable lateral offset. It can be seen that at this simple collision avoidance 

scenario, the proposed dynamic controller and the derived tolerance enables the vehicle to have 

a smooth and safe trajectory, and thus guarantees the comfortable experience without making 

the drivers of the AVs nervous. 



 

Figure 9   Simulation results for the scenario of static obstacle avoidance 

Scenario E: This scenario is a straight road with a preceding moving vehicle with a lower 

speed (5m/s). To avoid the collision between the host vehicle and the dynamic risk element, 

i.e. preceding vehicle, we recreate the left and right boundaries of the lateral offset corridor 

based on the corridor for the straight road without obstacles. Both of the left and the right 

boundaries are built with a Gaussian Curve, and the preceding moving vehicle is accurately 

excluded from the corridor. The result illustrated in Figure 11 shows the vehicle is able to avoid 

the dynamic risk elements with the updated corridor, and a smooth trajectory has been obtained. 

 

Figure 10   Simulation results for the scenario of dynamic obstacle avoidance 

7. Conclusion 

This study proposed a risk-corridor based vehicle motion control framework and some 

typical scenarios are simulated to verify the performance of the control method. The risk-based 

corridor was developed by the estimation of the acceptable lateral offset based on human driver 

testing within the driver simulator, while the vehicle dynamic corridor was defined by 

investigating the tyre/road interaction properties. 44 skilled drivers were tested for different 

road types and the drivers’ behaviour as well as the vehicle’s states such as positions, 

acceleration, speed, and yaw rate were collected and processed. The acceptable lateral offset 

tolerance were derived by processing the measured data of the drivers’ manoeuvre actions. 



With the derived lateral offset tolerance and the available vehicle dynamic constraints, a NMPC 

model has been developed by considering the comfort and sense of security and confidence of 

the drivers.  

With the proposed controller and the vehicle dynamic model, four different typical scenarios 

were simulated and analysed. Rather than following the planned path, i.e. the centre line of the 

lane in this study, the proposed motion control model enables the vehicle to have a more 

comfortable and acceptable trajectory as expected by the drivers.  Particularly, for the J-turn 

situation, the simulated results with the proposed controller shows the vehicle steers 2 s earlier 

from the straight road to the curved road than the road centre line, where following the path 

may lead to a sense of nervousness for the drivers. The simulated vehicle trajectory for sharp 

curve scenarios such as a double lane change shows the vehicle is able to have a smooth and 

stable motion within the derived corridor, while the road centre line path seems to be too sharp 

for the AVs and then it is not expected by the drivers. Collision avoidance in terms of avoiding 

the parking cars were also simulated to verify the feasibility of the controller, and the result 

shows the ego vehicle starts to avoid the parked car about 3s ahead and then gradually return 

to a position close to its original lateral position.  
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